Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis

  • Björn Kemper
  • Patrik Langehanenberg
  • Sebastian Kosmeier
  • Frank Schlichthaber
  • Christian Remmersmann
  • Gert von Bally
  • Christina Rommel
  • Christian Dierker
  • Jürgen Schnekenburger
Reference work entry


The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.


Phase Noise Reference Wave Object Wave Digital Holography Spatial Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support by the German Ministry for Education and Research (BMBF) is gratefully acknowledged.


  1. 1.
    E.M. Goldys (ed.), Fluorescence Applications in Biotechnology and the Life Sciences (Wiley-Blackwell, New-Jersey, 2009)Google Scholar
  2. 2.
    V. Ntziachristos, Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 8, 1–33 (2006)CrossRefGoogle Scholar
  3. 3.
    L. Schermelleh, R. Heintzmann, H. Leonhardt, A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010)CrossRefGoogle Scholar
  4. 4.
    B. Huang, M. Bates, X. Zhuang, Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009)CrossRefGoogle Scholar
  5. 5.
    The Molecular Probes® Handbook, 11th edn. (2011).
  6. 6.
    M. Monici, Cell and tissue autofluorescence research and diagnostic applications, in Biotechnology Annual Review, ed. by M.R. El-Gewely (Elsevier, Amsterdam, 2005), pp. 227–256Google Scholar
  7. 7.
    C.W. Chang, D. Sud, M.A. Mycek, Fluorescence lifetime imaging microscopy. Methods Cell Biol. 81, 495–524 (2007)CrossRefGoogle Scholar
  8. 8.
    O. Shimomura, The discovery of aequorin and green fluorescent protein. J. Microsc. 217, 3–15 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    P.L. Felgner et al., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U.S.A. 84, 7413–7417 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    X. Tsampoula et al., Fibre based cellular transfection. Opt. Express 16, 17007–17013 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    A.F. Fercher, Optical coherence tomography. J. Biomed. Opt. 1, 157–173 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9, 47–74 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    L.G. Rodriguez, S.J. Lockett, G.R. Holtom, Coherent anti-stokes raman scattering microscopy: a biological review. Cytometry A 69, 779–791 (2006)Google Scholar
  14. 14.
    T. Kreis, in Holographic Interferometry: Principles and Methods, ed. by W. Osten, vol. 1 (Akademie-Verlag, Berlin, 1996)Google Scholar
  15. 15.
    V.P. Shchepinov, V.S. Pisarev, Strain and Stress Analysis by Holographic and Speckle Interferometry (Wiley, New York, 1996)Google Scholar
  16. 16.
    M.-A. Beeck, W. Hentschel, Laser metrology – a diagnostic tool in automotive development processes. Opt. Lasers Eng. 34, 101–120 (2000)CrossRefGoogle Scholar
  17. 17.
    E. Cuche, P. Marquet, C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38(24), 6694–7001 (1999)Google Scholar
  18. 18.
    F. Charrière et al., Characterization of microlenses by digital holographic microscopy. Appl. Opt. 45, 829–835 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    D. Carl et al., Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl. Opt. 43, 6536–6544 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    P. Marquet et al., Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    C.J. Mann et al., High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express 13, 8693–8698 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    B. Kemper, G. von Bally, Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 47, A52–A61 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    B. Kemper et al., Modular digital holographic microscopy system for marker free quantitative phase contrast imaging of living cells. Proc. SPIE 6191, 61910T (2006)CrossRefGoogle Scholar
  24. 24.
    G. von Bally et al., New methods for marker-free live cell and tumor analyis, in Biophotonics: Vision for Better Healthcare, ed. by J. Popp, M. Strehle (Wiley, Berlin, 2006), pp. 301–360CrossRefGoogle Scholar
  25. 25.
    B. Kemper et al., Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy. J. Biophoton. 3, 425–431 (2010)CrossRefGoogle Scholar
  26. 26.
    M. Esseling et al., Multimodal biophotonic workstation for live cell analysis. J. Biophoton. 5, 9–13 (2012)CrossRefGoogle Scholar
  27. 27.
    L.G. Alexopoulos, G.R. Erickson, F. Guilak, A method for quantifying cell size from differential interference contrast images: validation and application to osmotically stressed chondrocytes. J. Microsc. 205, 125–135 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Barty et al., Quantitative optical phase microscopy. Opt. Lett. 23(11), 817–819 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    J. Farinas, A.S. Verkman, Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry. Biophys. J. 71, 3511–3522 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    T. Ikeda et al., Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30(10), 1165–1167 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    G. Popescu et al., Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett. 29, 2503–2505 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    V.P. Tychinskii, Coherent phase microscopy of intracellular processes. Phys. Usp. 44, 617–629 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    A.D. Aguirre et al., High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Opt. Lett. 28, 2064–2066 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    E.A. Swanson et al., In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Zhao et al., Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation. Opt. Lett. 27, 98–100 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    C.G. Rylander et al., Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy. Opt. Lett. 29(13), 1509–1511 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    A.K. Ellerbee, T.L. Reazzo, J.A. Izatt, Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy. Opt. Express 15, 8115–8124 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    C. Joo, K.H. Kim, J.F. de Boer, Spectral-domain optical coherence phase and multiphoton microscopy. Opt. Lett. 32, 623–625 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    U. Schnars, W.P.O. Jüptner, Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, 85–101 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    P. Langehanenberg, G. von Bally, B. Kemper, Application of partial coherent light in live cell imaging with digital holographic microscopy. J. Mod. Opt. 57, 709–717 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    B. Kemper et al., Investigation of living pancreas tumor cells by digital holographic microscopy. J. Biomed. Opt. 11(3), 034005–034008 (2006)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    H. Ding, G. Popescu, Instantaneous spatial light interference microscopy. Opt. Express 18, 1569–1575 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    J. Jang et al., Self-reference quantitative phase microscopy for microfluidic devices. Opt. Lett. 35, 514–516 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    N.T. Shaked et al., Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics. J. Biomed. Opt. 15, 030503 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    G. Popescu et al., Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–778 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    B. Kemper et al., Simplified approach for quantitative digital holographic quantitative phase contrast imaging of living cells. J. Biomed. Opt. 16, 026014 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    P. Bon et al., Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080–13094 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    T.-C. Poon (ed.), Digital Holography and Three-Dimensional Display (Springer, New York, 2006)Google Scholar
  49. 49.
    L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, Boston, 2004)Google Scholar
  50. 50.
    T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, Weinheim, 2005)Google Scholar
  51. 51.
    M.K. Kim, L. Yu, C.J. Mann, Interference techniques in digital holography. J. Opt. A 8, 518–523 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1996)Google Scholar
  53. 53.
    T. Colomb, F. Montfort, C. Depeursinge, Small reconstruction distance in convolution formalism, paper DMA4, in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest, ed. by C. Depeursinge (Optical Society of America, Washington, DC, 2008)Google Scholar
  54. 54.
    M.K. Kim, Principles and techniques of digital holographic microscopy. SPIE Rev. 1, 018005 (2010)CrossRefGoogle Scholar
  55. 55.
    S. De Nicola et al., Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes. Opt. Express 13, 9935–9940 (2005)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    N.T. Shaked et al., Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy. Biomed. Opt. Express 1, 706–719 (2010)CrossRefGoogle Scholar
  57. 57.
    B. Kemper et al., Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy. J. Bio. Med. Opt. 12, 054009 (2007)MathSciNetCrossRefGoogle Scholar
  58. 58.
    J. Klokkers et al., Atrial natriuretic peptide and nitric oxide signaling antagonizes 2 vasopressin-mediated water permeability in inner medullary 3 collecting duct cells. Am. J. Physiol. Renal Physiol. 297(3), F693–703 (2009)CrossRefGoogle Scholar
  59. 59.
    T. Zhang, I. Yamaguchi, Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 23, 1221–1223 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    I. Yamaguchi et al., Image formation in phase-shifting digital holography and applications to microscopy. Appl. Opt. 40, 6177–6186 (2001)ADSCrossRefGoogle Scholar
  61. 61.
    K. Creath, Temporal phase measurement methods, in Interferogram Analysis, ed. by D. Robinson, S. Reid (Institute of Physics Publishing, Bristol, 1993), pp. 94–140Google Scholar
  62. 62.
    F. Dubois, L. Joannes, J.-C. Legros, Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. 38(34), 7085–7094 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    B. Kemper et al., Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces. Opt. Lasers Eng. 46, 499–507 (2008)CrossRefGoogle Scholar
  64. 64.
    C. Remmersmann et al., Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging. Appl. Opt. 48, 1463–1472 (2009)ADSCrossRefGoogle Scholar
  65. 65.
    B. Kemper et al., Application of 3D tracking. LED illumination and multi-wavelength techniques for quantitative cell analysis in digital holographic microscopy. Proc. SPIE 7184, 71840R (2009)CrossRefGoogle Scholar
  66. 66.
    G. Nomarski, Differential microinterferometer with polarized waves. J. Phys. Radium. 16, 9–13 (1955)Google Scholar
  67. 67.
    B. Kemper et al., Optimization of spatial phase shifting in endoscopic electronic-speckle-pattern-interferometry. Opt. Commun. 217, 151–160 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    M. Liebling, T. Blu, M. Unser, Complex-wave retrieval from a single off-axis hologram. J. Opt. Soc. Am. A 21(3), 367–377 (2004)ADSCrossRefGoogle Scholar
  69. 69.
    P. Langehanenberg, G. von Bally, B. Kemper, Autofocussing in digital holographic microscopy. 3D Res. 2, 01004 (2011)CrossRefGoogle Scholar
  70. 70.
    P. Marquet et al., Analysis of cellular structure and dynamics with digital holographic microscopy. Proc. SPIE 6633, 66330F (2007)CrossRefGoogle Scholar
  71. 71.
    M. Takeda, H. Ina, S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982)ADSCrossRefGoogle Scholar
  72. 72.
    T. Kreis, Digital holographic interference-phase measurement using the Fourier-transform method. J. Opt. Soc. Am. A 3, 847–855 (1986)ADSCrossRefGoogle Scholar
  73. 73.
    S. Rasheed et al., Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33, 1027–1033 (1974)CrossRefGoogle Scholar
  74. 74.
    B. Kemper et al., Self interference digital holographic microscopy approach for inspection of technical and biological phase specimens. Proc. SPIE 8082, 808207 (2011)CrossRefGoogle Scholar
  75. 75.
    F. Dubois et al., Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express 14, 5895–5908 (2006)ADSCrossRefGoogle Scholar
  76. 76.
    P. Langehanenberg et al., Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging. Appl. Opt. 47, D176–D182 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    Y. Sun, S. Duthaler, B.J. Nelson, Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc. Res. Tech. 65, 139–149 (2004)CrossRefGoogle Scholar
  78. 78.
    F.C. Groen, I.T. Young, G. Ligthart, A comparison of different focus functions for use in autofocus algorithms. Cytometry A 6, 81–91 (1985)CrossRefGoogle Scholar
  79. 79.
    L. Firestone et al., Comparison of autofocus methods for automated microscopy. Cytometry 12, 195–206 (1991)CrossRefGoogle Scholar
  80. 80.
    M. Bravo-Zanoguera et al., High-performance autofocus circuit for biological microscopy. Rev. Sci. Instrum. 69, 3966–3977 (1998)ADSCrossRefGoogle Scholar
  81. 81.
    P. Langehanenberg, B. Kemper, G. von Bally, Autofocus algorithms for digital-holographic microscopy. Proc. SPIE 6633, 66330E (2007)ADSCrossRefGoogle Scholar
  82. 82.
    P. Langehanenberg et al., Automated 3D-tracking of living cells by digital holographic microscopy. J. Biomed. Opt. 14, 014018 (2009)ADSCrossRefGoogle Scholar
  83. 83.
    J. Kühn et al., Axial sub-nanometer accuracy in digital holographic microscopy. Meas. Sci. Technol. 19, 074007 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    S. Kosmeier et al., Multi-wavelength digital holographic microscopy for high resolution inspection of surfaces and imaging of phase specimen. Proc. SPIE 7718, 77180T (2010)CrossRefGoogle Scholar
  85. 85.
    H. Iwai et al., Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Opt. Lett. 29, 2399–2401 (2004)ADSCrossRefGoogle Scholar
  86. 86.
    J. Kühn et al., Sub-micrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection. Opt. Lett. 34, 653–655 (2009)ADSCrossRefGoogle Scholar
  87. 87.
    S. Kosmeier et al., Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length. Appl. Phys. B 106(1), 107–115 (2012)ADSCrossRefGoogle Scholar
  88. 88.
    B. Kemper, P. Langehanenberg, G. von Bally, Methods and applications for marker-free quantitative digital holographic phase contrast imaging in life cell analysis. Proc. SPIE 6796, 6796E (2007)ADSGoogle Scholar
  89. 89.
    A. Ashkin, Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. U.S.A. 94, 4853–4860 (1997)ADSCrossRefGoogle Scholar
  90. 90.
    J. Guck et al., Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84(23), 5451 (2000)ADSCrossRefGoogle Scholar
  91. 91.
    B. Rappaz et al., Measurement of the integral refractive index and dynamic cell morphotometry of living cells with digital holographic microscopy. Opt. Express 13, 9361–9373 (2005)ADSCrossRefGoogle Scholar
  92. 92.
    W. Choi et al., Tomographic phase microscopy. Nat. Methods 4, 717–719 (2007)CrossRefGoogle Scholar
  93. 93.
    M. Debailleul et al., High-resolution three-dimensional tomographic diractive microscopy of transparent inorganic and biological samples. Opt. Lett. 34, 79–81 (2009)ADSCrossRefGoogle Scholar
  94. 94.
    S. Kosmeier et al., Determination of the integral refractive index of cells in suspension by digital holographic phase contrast microscopy. Proc. SPIE 6991, 699110 (2008)CrossRefGoogle Scholar
  95. 95.
    M. Kemmler et al., Noninvasive timedependent cytometry monitoring by digital holography. J. Biomed. Opt. 12, 064002 (2007)ADSCrossRefGoogle Scholar
  96. 96.
    Å. Björk, Numerical Methods for Least Squares Problems (SIAM, Philadelphia, 1996)CrossRefGoogle Scholar
  97. 97.
    C.E. Rommel et al., Contrast enhanced digital holographic imaging of cellular structures by manipulating intracellular refractive index. J. Biomed. Opt. 15, 041509 (2010)ADSCrossRefGoogle Scholar
  98. 98.
    E. Shaffer et al., Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy. Opt. Lett. 35, 4102–4104 (2010)CrossRefGoogle Scholar
  99. 99.
    E. Shaffer, P. Marquet, C. Depeursinge, Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy. Opt. Express 18, 17392–17403 (2010)CrossRefGoogle Scholar
  100. 100.
    Y. Cotte et al., Realistic 3D coherent transfer function inverse filtering of complex fields. Biomed. Opt. Express 2, 2216–2230 (2011)CrossRefGoogle Scholar
  101. 101.
    Y. Cotte et al., Microscopy image resolution improvement by deconvolution of complex fields. Opt. Express 18, 19462–19478 (2010)ADSCrossRefGoogle Scholar
  102. 102.
    S.D. Babacan et al., Cell imaging beyond the diffraction limit using sparse deconvolution spatial light interference microscopy. Biomed. Opt. Express 2, 1815–1827 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Björn Kemper
    • 1
  • Patrik Langehanenberg
    • 1
  • Sebastian Kosmeier
    • 1
  • Frank Schlichthaber
    • 1
  • Christian Remmersmann
    • 1
  • Gert von Bally
    • 1
  • Christina Rommel
    • 2
  • Christian Dierker
    • 2
  • Jürgen Schnekenburger
    • 2
  1. 1.Center for Biomedical Optics and Photonics MuensterUniversity of MünsterMünsterGermany
  2. 2.Biomedical Technology CenterUniversity of MünsterMünsterGermany

Personalised recommendations