Skip to main content

Optical Coherence Microscopy

  • Reference work entry
  • First Online:
Handbook of Coherent-Domain Optical Methods

Abstract

This chapter presents the practical embodiment of two types of optical coherence microscope (OCM) modality that differ by probing method. The development and creation of a compact OCM device for imaging internal structures of biological tissue at the cellular level is presented. Ultrahigh axial resolution of 3.4 μm and lateral resolution of 3.9 μm within tissue was attained by combining broadband radiations of two spectrally shifted SLDs and implementing the dynamic focus concept, which allows in-depth scanning of a coherence gate and beam waist synchronously. This OCM prototype is portable and easy to operate; creation of a remote optical probe was feasible due to use of polarization maintaining fiber. The chapter also discusses the results of a theoretical investigation of OCM axial and lateral resolution degradation caused by light scattering in biological tissue. We demonstrate the first OCM images of biological objects using examples of plant and human tissue ex vivo.

Another variant of OCM is based on a broadband digital holographic technique. The final section of the chapter concerns 2D or 3D optical coherence tomography (OCT) imaging of the internal structure of strongly scattering media with micrometer-scale resolution by processing 200 sets of 2D holographic complex reconstructions at interference reception of backscattered light obtained at different wavelengths separated by a fixed spectral interval in the wavelength region of tens of nanometers. This technique of internal structure visualization apparently has a number of advantages over the known time-domain and spectral OCT methods, including the absence of transverse scanning systems at 3D visualization, and transverse spatial resolution has no limitations inherent in the correlation and spectral OCT techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, J.G. Fujimoto, Optical coherence microscopy in scattering media. Opt. Lett. 19, 590–592 (1994)

    Article  ADS  Google Scholar 

  2. J.A. Izatt, M.D. Kulkarni, H.-W. Wang, K. Kobayashi, M.V. Sivak Jr., Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J. Sel. Top. Quant. Electron. 2, 1017–1028 (1996)

    Article  Google Scholar 

  3. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, In vivo ultrahigh resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999)

    Article  ADS  Google Scholar 

  4. A.M. Kovalevicz, T. Ko, I. Hartl, J.G. Fujimoto, M. Pollnau, R.P. Salathe, Ultrahigh resolution optical coherence tomography using a superluminescent light source. Opt. Express 10, 349–353 (2002)

    Article  ADS  Google Scholar 

  5. I. Hartl, X.D. Li, C. Chudoba, R.K. Ghanta, T.H. Ko, J.G. Fujimoto, J.K. Ranka, R.S. Windeler, Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt. Lett. 26, 608–610 (2001)

    Article  ADS  Google Scholar 

  6. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S.J. Russel, M. Vetterlein, E. Scherzer, Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27, 1800–1802 (2002)

    Article  ADS  Google Scholar 

  7. J.M. Schmitt, S.L. Lee, K.M. Yung, An optical coherence microscope with enhanced resolving power in thick tissue. Opt. Commun. 142, 203–207 (1997)

    Article  ADS  Google Scholar 

  8. A. Baumgartner, C.K. Hitzenberger, H. Sattmann, W. Dresler, A.F. Fercher, Signal and resolution enhancements in dual beam optical coherence tomography of the human eye. J. Biomed. Opt. 3, 45–54 (1998)

    Article  ADS  Google Scholar 

  9. F. Lexer, C.K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, A.F. Fercher, Dynamic coherent focus OCT with depth-independent transversal resolution. J. Mod. Opt. 46, 541–553 (1999)

    ADS  Google Scholar 

  10. A. Knuttel, M. Boehlau-Godau, Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. J. Biomed. Opt. 5, 83–92 (2000)

    Article  ADS  Google Scholar 

  11. V.M. Gelikonov, G.V. Gelikonov, N.D. Gladkova, V.I. Leonov, F.I. Feldchtein, A.M. Sergeev, Y.I. Khanin, Optical fiber interferometer and piezoelectric modulator. US 5835642, 1998

    Google Scholar 

  12. V.K. Batovrin, I.A. Garmash, V.M. Gelikonov, G.V. Gelikonov, A.V. Lyubarskii, A.G. Plyavenek, S.A. Safin, A.T. Semenov, V.R. Shidlovskii, M.V. Shramenko, S.D. Yakubovich, Superluminescent diodes based on single-quantum-well (GaAl) As heterostructures. Quant. Electron. 26, 109–114 (1996)

    Article  ADS  Google Scholar 

  13. V.K. Batovrin, I.A. Garmash, V.M. Gelikonov, G.V. Gelikonov, A.V. Lyubarskii, A.G. Plyavenek, S.A. Safin, A.T. Semenov, V.R. Shidlovskii, M.V. Shramenko, S.D. Yakubovich, Superluminescent diodes based on single-quantum-well (GaAl) As heterostructures. Kvantovaya Elektronika Moskva 23, 113–118 (1996)

    Google Scholar 

  14. L.S. Dolin, A theory of optical coherence tomography. Quant. Electron. 41, 850–873 (1998)

    MathSciNet  ADS  Google Scholar 

  15. L.S. Dolin, On the passage of a pulsed light signal through an absorbing medium with strong anisotropic scattering. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 26, 300–309 (1983)

    Google Scholar 

  16. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)

    Google Scholar 

  17. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  ADS  Google Scholar 

  18. T. Wilson, Confocal Microscopy (Academic, San Diego/London, 1990), p. 426

    Google Scholar 

  19. V.M. Gelikonov, G.V. Gelikonov, R.V. Kuranov, N.K. Nikulin, G.A. Petrova, V.V. Pochinko, K.I. Pravdenko, A.M. Sergeev, F.I. Feldchtein, Y.I. Khanin, D.V. Shabanov, Coherent optical tomography of microscopic inhomogenities in biological tissues. J. Exp. Theor. Phys. Lett. 61, 149–153 (1995)

    Google Scholar 

  20. B.E. Bouma, G.J. Tearney (eds.), in Handbook of Optical Coherence Tomography, 1st edn. (Marcel Dekker, New York, 2002), p. 741

    Google Scholar 

  21. E. Gotzinger, M. Pircher, R.A. Leitgeb, C.K. Hitzenberger, High speed full range complex spectral domain optical coherence tomography. Opt. Express 13, 583–594 (2005)

    Article  ADS  Google Scholar 

  22. J. Ai, L.V. Wang, Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography. Opt. Lett. 30, 2939–2941 (2005)

    Article  ADS  Google Scholar 

  23. V.V. Tuchin, Optical clearing of tissues and blood using the immersion method. J. Phys. D (Appl. Phys.) 38, 2497–2518 (2005)

    Article  ADS  Google Scholar 

  24. S.G. Proskurin, I.V. Meglinski, Optical coherence tomography imaging depth enhancement by superficial skin optical clearing. Laser Phys. Lett. 4, 824–826 (2007)

    Article  ADS  Google Scholar 

  25. I.V. Larina, E.F. Carbajal, V.V. Tuchin, M.E. Dickinson, K.V. Larin, Enhanced OCT imaging of embryonic tissue with optical clearing. Laser Phys. Lett. 5, 476–479 (2008)

    Article  ADS  Google Scholar 

  26. C.J. Koester, Handbook of Biological Confocal Microscopy (Plenum, New York, 1990)

    Google Scholar 

  27. T. Zhang, I. Yamaguchi, Three-dimentional microscopy with phase-shifting digital holography. Opt. Lett. 23, 1221–1223 (1998)

    Article  ADS  Google Scholar 

  28. M.K. Kim, Wavelength-scanning digital interference holography for optical section imaging. Opt. Lett. 24, 1693–1695 (1999)

    Article  ADS  Google Scholar 

  29. L. Yu, M.K. Kim, Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. Opt. Lett. 30, 2092–2094 (2005)

    Article  ADS  Google Scholar 

  30. J. Lademann, J. Shevtsova, A. Patzelt, H. Richter, N.D. Gladkowa, V.M. Gelikonov, S.A. Gonchukov, Optical method for the screening of doping substances. Laser Phys. Lett. 5, 908–911 (2008)

    Article  ADS  Google Scholar 

  31. D.V. Shabanov, G.V. Gelikonov, V.M. Gelikonov, Broadband digital holographic technique of optical coherence tomography for 3-dimensional biotissue visualization. Laser Phys. Lett. 6, 753–758 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Alexander Turkin and Pavel Morozov for assistance in creating optical elements, Irina Andronova for valuable scientific discussion, Nadezhda Krivatkina and Lidia Kozina for providing translation, and Marina Chernobrovtzeva for editing. This work was partly supported by the Russian Foundation for Basic Research under the grants #01-02-17721, #03-02-17253, #03-02-06420 and by the Civilian Research & Development Foundation under the grant RB2-2389-NN-02 and State Contract No. 02.740.11.0516 of March 15, 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigory V. Gelikonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Gelikonov, G.V. et al. (2013). Optical Coherence Microscopy. In: Tuchin, V. (eds) Handbook of Coherent-Domain Optical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5176-1_27

Download citation

Publish with us

Policies and ethics