Optical Coherence Tomography: Principles and Applications of Microvascular Imaging

  • Beau A. Standish
  • Adrian Mariampillai
  • Michael K. K. Leung
  • I. Alex Vitkin
Reference work entry


Microvascular detection and quantification with optical coherence tomography is an exciting and growing research field and is the topic of this chapter. Specifically, the fundamental principles of OCT microvascular imaging are described, encompassing phase-resolved and power-based methods, and the use of exogenous contrast agents. Representative biomedical applications of microvascular OCT imaging are presented, with emphasis on treatment monitoring and tissue response assessment. A discussion of outstanding challenges and future outlook concludes the chapter.


Optical Coherence Tomography Optical Coherence Tomography System Frequency Domain Optical Coherence Tomography Laser Speckle Contrast Imaging Exogenous Contrast Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.S. Kerbel, Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008)Google Scholar
  2. 2.
    W. Wang, D. Dean, H. Kaplan, Age-related macular degeneration. Discov. Med. 9, 13–15 (2010)MATHGoogle Scholar
  3. 3.
    P.R. Moreno, K. Purushothaman, Neovascularization in human atherosclerosis. Circulation 113, 2245–2252 (2006)CrossRefGoogle Scholar
  4. 4.
    A. Eberhard, S. Kahlert, V. Goede, B. Hemmerlein, K.H. Plate, H.G. Augustin, Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60, 1388–1393 (2000)Google Scholar
  5. 5.
    J.R. Less, T.C. Skalak, E.M. Sevick, R.K. Jain, Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 51, 265–273 (1991)Google Scholar
  6. 6.
    C.M.L. West, R.A. Cooper, J.A. Loncaster, D.P. Wilks, M. Bromley, Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res. 61, 2907–2910 (2001)Google Scholar
  7. 7.
    S.B. Fox, R.D. Leek, M.P. Weekes, R.M. Whitehouse, K.C. Gatter, A.L. Harris, Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J. Pathol. 177, 275–283 (1995)CrossRefGoogle Scholar
  8. 8.
    E. Protopapa, G.S. Delides, L. Revesz, Vascular density and the response of breast carcinomas to mastectomy and adjuvant chemotherapy. Eur. J. Cancer A Gen. Top. 29, 1391–1393 (1993)CrossRefGoogle Scholar
  9. 9.
    E.R. Horak, R. Leek, N. Klenk, S. LeJeune, K. Smith, N. Stuart, M. Greenall, K. Stepniewska, A.L. Harris, Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340, 1120–1124 (1992)CrossRefGoogle Scholar
  10. 10.
    H.F. Zhang, K. Maslov, M.-L. Li, G. Stoica, L.V. Wang, In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy. Opt. Express 14, 9317–9323 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    M.C. Pilatou, N.J. Voogd, F.F.M.D. Mul, W. Steenbergen, L.N.A.V. Adrichem, Analysis of three-dimensional photoacoustic imaging of a vascular tree in vitro. Rev. Sci. Instrum. 74, 4495–4499 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    G. Yu, T. Durduran, C. Zhou, H.W. Wang, M.E. Putt, H.M. Saunders, C.M. Sehgal, E. Glatstein, A.G. Yodh, T.M. Busch, Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy. Clin. Cancer Res. 11, 3543–3552 (2005)CrossRefGoogle Scholar
  13. 13.
    C. Menon, G.M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J.P. Culver, J.F. Pingpank, C.S. Sehgal, A.G. Yodh, D.G. Buerk, An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model. Cancer Res. 63, 7232–7240 (2003)Google Scholar
  14. 14.
    M.P. Pusztaszeri, W. Seelentag, F.T. Bosman, Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J. Histochem. Cytochem. 54, 385–395 (2006)CrossRefGoogle Scholar
  15. 15.
    P. Hsiung, J. Hardy, S. Friedland, R. Soetikno, C. Du, A. Wu, P. Sahbaie, J. Crawford, A. Lowe, C. Contag, Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nature 14, 454–458 (2008)CrossRefGoogle Scholar
  16. 16.
    A. Meining, D. Saur, M. Bajbouj, V. Becker, E. Peltier, H. HoÃàfler, C.H. von Weyhern, R.M. Schmid, C. Prinz, In vivo histopathology for detection of gastrointestinal neoplasia with a portable, confocal miniprobe: an examiner blinded analysis. Clin. Gastroenterol. Hepatol. 5, 1261–1267 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Khurana, H.A. Collins, E.H. Moriyama, A. Mariampillai, H.L. Anderson, B.C. Wilson, Multi-modality optical imaging of vascular responses to photodynamic therapy in mouse window chamber model. Presented at the BIOMED conference, St. Petersburg, Florida (2008)Google Scholar
  18. 18.
    M. Khurana, E.H. Moriyama, A. Mariampillai, B.C. Wilson, Intravital high resolution optical imaging of individual vessel response to photodynamic treatment. J. Biomed. Opt. 13, 040502 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    A. Fercher, J. Briers, Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37, 326–330 (1981)ADSCrossRefGoogle Scholar
  20. 20.
    J.D. Briers, S. Webster, Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. J. Biomed. Opt. 1, 174–179 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Y.C. Huang, T.L. Ringold, J.S. Nelson, B. Choi, Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks. Lasers Surg. Med. 40, 167–173 (2008)CrossRefGoogle Scholar
  22. 22.
    A.K. Dunn, A. Devor, A.M. Dale, D.A. Boas, Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage 27, 279–290 (2005)CrossRefGoogle Scholar
  23. 23.
    H.K. Shin, A.K. Dunn, P.B. Jones, D.A. Boas, M.A. Moskowitz, C. Ayata, Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J. Cereb. Blood Flow Metab. 26, 1018–1030 (2005)CrossRefGoogle Scholar
  24. 24.
    H.K. Shin, A.K. Dunn, P.B. Jones, D.A. Boas, E.H. Lo, M.A. Moskowitz, C. Ayata, Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain 130, 1631–1642 (2007)CrossRefGoogle Scholar
  25. 25.
    K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, A.F. Fercher, W. Drexler, M. Preusser, H. Budka, A. Stingl, T. Le, Imaging ex vivo healthy and pathological human brain tissue with ultra-high-resolution optical coherence tomography. J. Biomed. Opt. 10, 11006 (2005)CrossRefGoogle Scholar
  26. 26.
    V.X.D. Yang, M.L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B.C. Wilson, I.A. Vitkin, High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance. Opt. Express 11, 794–809 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    B.J. Vakoc, S.H. Yun, J.F. De Boer, G.J. Tearney, B.E. Bouma, Phase-resolved optical frequency domain imaging. Opt. Express 13, 5483–5493 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    J. Barton, S. Stromski, Flow measurement without phase information in optical coherence tomography images. Opt. Express 13, 5234–5239 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    J. Fingler, D. Schwartz, C. Yang, S.E. Fraser, Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt. Express 15, 12636–12653 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    R.K. Wang, S.L. Jacques, Z. Ma, S. Hurst, S.R. Hanson, A. Gruber, Three dimensional optical angiography. Opt. Express 15, 4083–4097 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    B.J. Vakoc, R.M. Lanning, J.A. Tyrrell, T.P. Padera, L.A. Bartlett, T. Stylianopoulos, L.L. Munn, G.J. Tearney, D. Fukumura, R.K. Jain, B.E. Bouma, Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Mariampillai, B.A. Standish, E.H. Moriyama, M. Khurana, N.R. Munce, M.K.K. Leung, J. Jiang, A. Cable, B.C. Wilson, I.A. Vitkin, V.X.D. Yang, Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 33, 1530–1532 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    C. Kasai, K. Namekawa, A. Koyano, R. Omoto, Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans. Sonics Ultrason. 32, 458–464 (1985)CrossRefGoogle Scholar
  34. 34.
    A. Mariampillai, B.A. Standish, N.R. Munce, C. Randall, G. Liu, J.Y. Jiang, A.E. Cable, I.A. Vitkin, V.X.D. Yang, Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system. Opt. Express 15, 1627–1638 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    T.C. Chen, B. Cense, M.C. Pierce, N. Nassif, B.H. Park, S.H. Yun, B.R. White, B.E. Bouma, G.J. Tearney, J.F. De Boer, Spectral domain optical coherence tomography ultra-high speed, ultra-high resolution ophthalmic imaging. Arch. Ophthalmol. 123, 1715–1720 (2005)CrossRefGoogle Scholar
  36. 36.
    B.J. Vakoc, G.J. Tearney, B.E. Bouma, Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography. IEEE Trans. Med. Imaging 28, 814–821 (2009)CrossRefGoogle Scholar
  37. 37.
    V.X.D. Yang, M.L. Gordon, A. Mok, Y. Zhao, Z. Chen, R.S.C. Cobbold, B.C. Wilson, I. Alex Vitkin, Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation. Opt. Commun. 208, 209–214 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    H. Ren, Y. Wang, J.S. Nelson, Z. Chen, Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chrioallantoic membrane. Proceedings of SPIE, vol. 4956 (2003)Google Scholar
  39. 39.
    L. An, R.K. Wang, In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt. Express 16, 11438–11452 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    R.K. Wang, Directional blood flow imaging in volumetric optical microangiography achieved by digital frequency modulation. Opt. Lett. 33, 1878–1880 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    G. van Soest, T. Goderie, E. Regar, S. Koljenovi, G. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. Bouma, G. Tearney, Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J. Biomed. Opt. 15, 011105 (2010)CrossRefGoogle Scholar
  42. 42.
    A. Mariampillai, M.K.K. Leung, M. Jarvi, B.A. Standish, K. Lee, B.C. Wilson, A. Vitkin, V.X.D. Yang, Optimized speckle variance OCT imaging of microvasculature. Opt. Lett. 35, 1257–1259 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    A. Mariampillai, Development of a high resolution microvascular imaging toolkit for optical coherence tomography. Thesis from the Department of Medical Biophysics, University of Toronto, Toronto, 2010Google Scholar
  44. 44.
    E.G. Atkinson, S. Jones, B.A. Ellis, D.C. Dumonde, E. Graham, Molecular size of retinal vascular leakage determined by FITC-dextran angiography in patients with posterior uveitis. Eye 5, 440–446 (1991)CrossRefGoogle Scholar
  45. 45.
    J.M. Schmitt, A. Knüttel, Model of optical coherence tomography of heterogeneous tissue. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 1231–1242 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    C. Yang, Molecular contrast optical coherence tomography: a review. Photochem. Photobiol. 81, 215–237 (2005)CrossRefGoogle Scholar
  47. 47.
    L.A. Yannuzzi, J.S. Slakter, J.A. Sorenson, D.R. Guyer, D.A. Orlock, Digital indocyanine green videoangiography and choroidal neovascularization. Retina 12, 191–223 (1992)CrossRefGoogle Scholar
  48. 48.
    U. Morgner, W. Drexler, F.X. Kärtner, X.D. Li, C. Pitris, E.P. Ippen, J.G. Fujimoto, Spectroscopic optical coherence tomography. Opt. Lett. 25, 111–113 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    F. Robles, R.N. Graf, A. Wax, Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution. Opt. Express 17, 6799–6812 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    C. Xu, J. Ye, D.L. Marks, S.A. Boppart, Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Opt. Lett. 29, 1647–1649 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    J.K. Barton, J.B. Hoying, C.J. Sullivan, Use of microbubbles as an optical coherence tomography contrast agent. Acad. Radiol. 9, S52–S55 (2002)CrossRefGoogle Scholar
  52. 52.
    S.A. Boppart, A.L. Oldenburg, C. Xu, D.L. Marks, Optical probes and techniques for molecular contrast enhancement in coherence imaging. J. Biomed. Opt. 10, 041208 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    K.D. Rao, M.A. Choma, S. Yazdanfar, A.M. Rollins, J.A. Izatt, Molecular contrast in optical coherence tomography by use of a pump probe technique. Opt. Lett. 28, 340–342 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    C. Yang, M.A. Choma, L.E. Lamb, J.D. Simon, J.A. Izatt, Protein-based molecular contrast optical coherence tomography with phytochrome as the contrast agent. Opt. Lett. 29, 1396–1398 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    A.L. Oldenburg, V. Crecea, S.A. Rinne, S.A. Boppart, Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. Opt. Express 16, 11525–11539 (2008)Google Scholar
  56. 56.
    Z. Chen, T.E. Milner, D. Dave, J.S. Nelson, Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 22, 64–66 (1997)ADSCrossRefGoogle Scholar
  57. 57.
    J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, J.K. Barton, A.J. Welch, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett. 22, 1439–1441 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    S. Yazdanfar, A.M. Rollins, J.A. Izatt, Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt. Lett. 25, 1448–1450 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, Optical coherence angiography. Opt. Express 14, 7821–7840 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (Slack, Thorofare, NJ, 2004)Google Scholar
  61. 61.
    V. Gupta, A. Gupta, M. Mangat Ram Dogra, Atlas Optical Coherence Tomography of Macular Diseases and Glaucoma (Jaypee Brothers Medical, New Delhi, India, 2010)Google Scholar
  62. 62.
    Y. Wang, A.A. Fawzi, R. Varma, A.A. Sadun, X. Zhang, O. Tan, J.A. Izatt, D. Huang, Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest. Ophthalmol. Vis. Sci. 52, 840–845 (2011)CrossRefGoogle Scholar
  63. 63.
    T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, Photodynamic therapy. J. Natl. Cancer Inst. 90, 889–905 (1998)Google Scholar
  64. 64.
    Z. Huang, A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 4, 283–293 (2005)Google Scholar
  65. 65.
    Z. Luksiene, Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas) 39, 1137–1150 (2003)Google Scholar
  66. 66.
    M.S. Patterson, S.J. Madsen, B.C. Wilson, Experimental tests of the feasibility of singlet oxygen luminescence monitoring in vivo during photodynamic therapy. J. Photochem. Photobiol. B Biol. 5, 69–84 (1990)CrossRefGoogle Scholar
  67. 67.
    C.M. Moore, I.M. Hoh, S.G. Bown, M. Emberton, Does photodynamic therapy have the necessary attributes to become a future treatment for organ-confined prostate cancer? BJU Int. 96, 754–758 (2005)CrossRefGoogle Scholar
  68. 68.
    G. Volden, T. Christensen, J. Moan, Photodynamic membrane damage of hematoporphyrin derivative-treated NHIK 3025 cells in vitro. Photobiochem. Photobiophys. 3, 105–111 (1981)Google Scholar
  69. 69.
    J. Moan, J. McGhie, P.B. Jacobsen, Photodynamic effects on cells in vitro exposed to hematoporphyrin derivative and light. Photochem. Photobiol. 37, 599–604 (1983)CrossRefGoogle Scholar
  70. 70.
    K.G. Specht, M.A. Rodgers, Depolarization of mouse myeloma cell membranes during photodynamic action. Photochem. Photobiol. 51, 319–324 (1990)CrossRefGoogle Scholar
  71. 71.
    A. Ketabchi, A. MacRobert, P.M. Speight, J.H. Bennett, Induction of apoptotic cell death by photodynamic therapy in human keratinocytes. Arch. Oral Biol. 43, 143–149 (1998)CrossRefGoogle Scholar
  72. 72.
    G. Buggiani, M. Troiano, R. Rossi, T. Lotti, Photodynamic therapy: off-label and alternative use in dermatological practice. Photodiagnosis Photodyn. Ther. 5, 134–138 (2008)CrossRefGoogle Scholar
  73. 73.
    D. Fukumura, R.K. Jain, Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res. 74, 72–84 (2007)CrossRefGoogle Scholar
  74. 74.
    B. Chen, C. He, P. de Witte, P.J. Hoopes, T. Hasan, B.W. Pogue, Vascular targeting in photodynamic therapy, in Advances in Photodynamic Therapy: Basic, Translational, and Clinical, ed. by M.R. Hamblin, P. Mroz (Artech House, Norwood, 2008), pp. 179–191Google Scholar
  75. 75.
    V.X.D. Yang, Y.X. Mao, N. Munce, B. Standish, W. Kucharczyk, N.E. Marcon, B.C. Wilson, I.A. Vitkin, Interstitial Doppler optical coherence tomography. Opt. Lett. 30, 1791–1793 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    B.A. Standish, X. Jin, J. Smolen, A. Mariampillai, N.R. Munce, B.C. Wilson, I.A. Vitkin, V.X.D. Yang, Interstitial Doppler optical coherence tomography monitors microvascular changes during photodynamic therapy in a Dunning prostate model under varying treatment conditions. J. Biomed. Opt. 12, 034022 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    B. Standish, K. Lee, X. Jin, A. Mariampillai, N. Munce, M. Wood, B. Wilson, I. Vitkin, V. Yang, Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study. Cancer Res. 68, 9987–9995 (2008)CrossRefGoogle Scholar
  78. 78.
    J.C. Sandison, The transparent chamber of the rabbit’s ear giving a complete description of improved techniques of construction and introduction and general account of growth and behavior of living cells and tissues as seen with the microscope. Am. J. Anat. 41, 447–472 (1928)CrossRefGoogle Scholar
  79. 79.
    G.E. Koehl, A. Gaumann, E.K. Geissler, Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies. Clin. Exp. Metastasis 26, 329–344 (2009)CrossRefGoogle Scholar
  80. 80.
    M.W. Dewhirst, Y. Cao, B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer 8, 425–437 (2008)CrossRefGoogle Scholar
  81. 81.
    J.B. Owen, L.R. Coia, G.E. Hanks, Recent patterns of growth in radiation therapy facilities in the United States: a patterns of care study report. Int. J. Radiat. Oncol. Biol. Phys. 24, 983–986 (1992)CrossRefGoogle Scholar
  82. 82.
    B. Emami, J. Lyman, A. Brown, L. Coia, M. Goitein, J.E. Munzenrider, B. Shank, L.J. Solin, M. Wesson, Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 21, 109–122 (1991)CrossRefGoogle Scholar
  83. 83.
    D.W. Siemann, M.R. Horsman, Chapter 8 – Significance of the tumour microenvironment in radiotherapy, in Cancer Microenvironment and Therapeutic Implications, ed. by G. Baronzio, G. Fiorentini, C.R. Cogle (Springer, 2009)Google Scholar
  84. 84.
    J. Folkman, Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995)CrossRefGoogle Scholar
  85. 85.
    O. Stöltzing, L.M. Ellis, The role of microvasculature in metastasis formation, in Vascular-Targeted Therapies in Oncology, ed. by D.W. Siemann (Wiley, Chichester, 2006), pp. 31–62CrossRefGoogle Scholar
  86. 86.
    P. Vaupel, Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol. 14, 198–206 (2004)CrossRefGoogle Scholar
  87. 87.
    T.C. Lee, R.L. Kashyap, C.N. Chu, Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Model Image Process. 56, 462–478 (1994)CrossRefGoogle Scholar
  88. 88.
    I. Madani, W. Duthoy, C. Derie, W. De Gersem, T. Boterberg, M. Saerens, F. Jacobs, V. Grégoire, M. Lonneux, L. Vakaet, B. Vanderstraeten, W. Bauters, K. Bonte, H. Thierens, W. De Neve, Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 68, 126–135 (2007)CrossRefGoogle Scholar
  89. 89.
    T. Gupta, S. Jain, J.P. Agarwal, V. Rangarajan, N. Purandare, S. Ghosh-Laskar, K.A. Dinshaw, Diagnostic performance of response assessment FDG-PET/CT in patients with head and neck squamous cell carcinoma treated with high-precision definitive (chemo)radiation. Radiother. Oncol. 97, 194–199 (2010)CrossRefGoogle Scholar
  90. 90.
    D.S. Yoo, T.Z. Wong, D.M. Brizel, The role of adaptive and functional imaging modalities in radiation therapy: approach and application from a radiation oncology perspective. Semin. Ultrasound CT MRI 31, 444–461 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Beau A. Standish
    • 1
  • Adrian Mariampillai
    • 1
  • Michael K. K. Leung
    • 2
  • I. Alex Vitkin
    • 2
    • 3
  1. 1.Department of Electrical and Computer EngineeringRyerson UniversityTorontoCanada
  2. 2.Departments of Medical Biophysics and Radiation OncologyUniversity of TorontoTorontoCanada
  3. 3.Division of Biophysics and BioimagingOntario Cancer Institute/University Health NetworkTorontoCanada

Personalised recommendations