Quasi-Elastic Light Scattering in Ophthalmology

Reference work entry

Abstract

The eye is not just a “window to the soul”; it can also be a “window to the human body.” The eye is built like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type and fluid type in the human body. Therefore, it is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) also known as dynamic light scattering (DLS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. QELS instrumentation has now become more compact, sensitive, flexible, and easy to use. These developments have made QELS/DLS an important tool in ophthalmic research where disease can be detected early and noninvasively before the clinical symptoms appear.

Keywords

Osteoporosis Retina Flare Disulfide Fibril 

Notes

Acknowledgments

The author would like to thank Dr. Valery Tuchin for inviting him to write this chapter. He is also indebted to many colleagues and collaborators with whom experiments reported in this chapter were conducted. These include Sam Zigler and Manuel Datiles of NEI/NIH in Bethesda, MD, for animal and clinical cataract studies, Luigi Rovati of the University of Modena in Italy for glaucoma studies, John Clark of the University of Washington in Seattle for pantethine treatment, Frank Giblin of the Oakland University in MI for guinea pig HBO and rabbit X-ray studies, Michelle Chenault of FDA, Rockville Pike in MD for studies on diabetic sand rats, Jerry Sebag of Doheny Eye Institute in Los Angeles, CA, for vitreopathy studies, Kwang Suh and Jim King of the author’s laboratory for new instrument development, and Su-Long Nyeo of the Cheng Kung University in Taiwan for new software development. The support under NASA-NIH and NASA-FDA interagency agreements on the development and use of QELS/DLS in ophthalmology and funding from the John H. Glenn Biomedical Engineering Consortium for the bioastronautics research are greatly appreciated.

References

  1. 1.
    B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic, New York, 1991)Google Scholar
  2. 2.
    T. Tanaka, G.B. Benedek, Observation of protein diffusivity in intact human and bovine lenses with application to cataract. Invest. Ophthalmol. Vis. Sci. 14(6), 449–456 (1975)Google Scholar
  3. 3.
    S.E. Bursell, P.C. Magnante, L.T. Chylack, In vivo uses of quasi-elastic light scattering spectroscopy as a molecular probe in the anterior segment of the eye, in Noninvasive Diagnostic Techniques in Ophthalmology, ed. by B.R. Masters (Springer, New York, 1990), pp. 342–365CrossRefGoogle Scholar
  4. 4.
    R.R. Ansari, Ocular static and dynamic light scattering: a non-invasive diagnostic tool for eye research and clinical practice. J. Biomed. Opt. 9(1), 22–37 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    D.S. Friedman et al., Vision Problems in the US: Prevalence of Adult Vision and Age-Related Eye Disease in America (National Eye Institute (National Institutes of Health)/Prevent Blindness America, Bethesda/Schaumburg, 2012). http://www.visionproblemsus.org
  6. 6.
    G.W. Tate, A. Safiz, The slit lamp, history, principle, and practice, in Duane’s Clinical Ophthalmology, ed. by W. Tasman, E.A. Jaeger (J.B. Lippincott, Philadelphia, 1992)Google Scholar
  7. 7.
    A. Wegener, H. Laser-Junga, Photography of the anterior eye segment according to Scheimpflug’s principle: options and limitations – a review. Clin. Experiment. Ophthalmol. 37, 144–154 (2009)CrossRefGoogle Scholar
  8. 8.
    R.H. Stock, W.H. Ray, Interpretation of photon correlation data: a comparison of analysis methods. J. Polym. Sci. A 23, 1393–1447 (1985)Google Scholar
  9. 9.
    H.S. Dhadwal, R.R. Ansari, M.A. Dellavecchia, Coherent fiber optic sensor for early detection of cataractogenesis in a human eye lens. Opt. Eng. 32(2), 233–238 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    L. Rovati, F. Fankhauser II, J. Rick, Design and performance of a new ophthalmic instrument for dynamic light scattering in the human eye. Rev. Sci. Instrum. 67(7), 2620 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    R.R. Ansari, K.I. Suh, A. Arabshahi, W.W. Wilson, T.L. Bray, L.J. DeLucas, A fiber optic probe for monitoring protein aggregation, nucleation and crystallization. J. Cryst. Growth 168, 216–226 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    M.F. Simpanya, R.R. Ansari, K.I. Suh, V.R. Leverenz, F.J. Giblin, Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis. Invest. Ophthalmol. Vis. Sci. 46(12), 4641–4651 (2005)CrossRefGoogle Scholar
  13. 13.
    J. Sebag, R.R. Ansari, K.I. Suh, Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 576–580 (2007)CrossRefGoogle Scholar
  14. 14.
    M.F. Simpanya, R.R. Ansari, V.R. Leverenz, F.J. Giblin, Measurement of lens protein aggregation in vivo using dynamic light scattering in a guinea pig/UVA model for nuclear cataract. Photochem. Photobiol. 84, 1589–1595 (2008)CrossRefGoogle Scholar
  15. 15.
    M.B. Datiles, R.R. Ansari, K.I. Suh, S. Vitale, G.F. Reed, J.S. Zigler, F.L. Ferris, Clinical detection of precataractous lens protein changes using dynamic light scattering. Arch. Ophthalmol. 126(12), 1687–1693 (2008)CrossRefGoogle Scholar
  16. 16.
    L. Pollonini, L. Rovati, R.R. Ansari, Dynamic light scattering and natural fluorescence measurements in healthy and pathological ocular tissues. Proc. SPIE 4611, 213–219 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    M.B. Datiles III, R.R. Ansari, Clinical evaluation of cataracts, in Duane’s Clinical Ophthalmology, ed. by W. Tasman, E. Jaeger, vol. 73B (Lippincott, Philadelphia, 2003)Google Scholar
  18. 18.
    C. Kent, Cracking the cataract code, new technology, new hope. Rev. Ophthalmol. XVI(10), 80–87 (2009)MathSciNetGoogle Scholar
  19. 19.
    M.B. Datiles III, R.R. Ansari, G.F. Reed, A clinical study of the human lens with a dynamic light scattering device. Exp. Eye Res. 74(1), 93–102 (2002)CrossRefGoogle Scholar
  20. 20.
    A. Foster, Cataract – a global perspective: output, outcome and outlay. Eye 3, 449–453 (1999)CrossRefGoogle Scholar
  21. 21.
    C. Kupfer, Bowman lecture. The conquest of cataract: a global challenge. Trans. Ophthalmol. Soc. 104(1), 1–10 (1984)Google Scholar
  22. 22.
    J.J. Harding, Drugs. Aging 18(7), 473–486 (2001)CrossRefGoogle Scholar
  23. 23.
    G.B. Benedek, J. Pande, G.M. Thurston, J.L. Clark, Theoretical and experimental basis for the inhibition of cataract. Prog. Retin. Eye Res. 18, 391–402 (1999)CrossRefGoogle Scholar
  24. 24.
    G.M. Thurston, D.L. Hayden, P. Burrows, J.I. Clark, V.G. Taret, J. Kandel, M. Courogen, J.A. Peetermans, M.S. Bowen, D. Miller, K.M. Sullivan, R. Storb, H. Stern, G.B. Benedek, Quasielastic light scattering study of the living human lens as a function of age. Curr. Eye Res. 16(3), 197–207 (1997)CrossRefGoogle Scholar
  25. 25.
    H. Dhadwal, J. Wittpen, In vivo dynamic light scattering characterization of the human lens: cataract index. Curr. Eye Res. 20(6), 502–510 (2000)CrossRefGoogle Scholar
  26. 26.
    R.R. Ansari, J.F. King, T. Seeberger, J.I. Clark, Early detection of cataract and response to pantethine therapy with non-invasive static and dynamic light scattering. Proc. SPIE 4951, Ophthalmic Technologies XIII, 168 (2003)Google Scholar
  27. 27.
    J.I. Clark, J.C. Livesey, J.E. Steele, Delay or inhibition of rat lens opacification using pantethine and WR-77913. Exp. Eye Res. 62, 75–85 (1996)CrossRefGoogle Scholar
  28. 28.
    F.A. Bettelheim, R.R. Ansari, Q. Cheng, J.S. Zigler, The mode of chaperoning of dithiothreitol-denatured α lactalbumin by α crystallin. Biochem. Biophys. Res. Commun. 261, 292–297 (1999)CrossRefGoogle Scholar
  29. 29.
    J.S. Zigler, P. Russel, S. Tumminia, C. Qin, C.M. Krishna, Hydroxylamine compositions for the prevention or retardation of cataracts, U. S. Patent 6,001,853, 14 December 1999Google Scholar
  30. 30.
    J.S. Zigler, C. Qin, T. Kamiya, M.C. Krishna, Q. Cheng, S. Tumminia, P. Russell, Tempol-H inhibits opacification of lenses in organ culture. Free Radic. Biol. Med. 35, 1194–1202 (2003)CrossRefGoogle Scholar
  31. 31.
    V.M. Chenault, M.N. Ediger, R.R. Ansari, In vivo assessment of diabetic lenses using dynamic light scattering. Diabetes Technol. Ther. 4(5), 651–659 (2002)CrossRefGoogle Scholar
  32. 32.
    R.R. Ansari, K.I. Suh, S. Dunker, N. Kitaya, J. Sebag, Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering. Exp. Eye Res. 73, 859–866 (2001)CrossRefGoogle Scholar
  33. 33.
    L. Rovati, F. Fankhauser II, F. Docchio, J. Van Best, Diabetic retinopathy assessed by dynamic light scattering and corneal autofluorescence. J. Biomed. Opt. 3(3), 357–363 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    R. Klein, B.E.K. Klein, S.E. Moss, Visual impairment in diabetes. Ophthalmology 91, 1–9 (1984)Google Scholar
  35. 35.
    M. Brownlee, The role of nonenzymatic glycosylation in the pathogenesis of diabetic angiopathy, in Complications of Diabetes Mellitus, ed. by B. Drazin, S. Melmed, D. LeRioth (Alan R. Liss, New York, 1989), pp. 9–17Google Scholar
  36. 36.
    J. Sebag, Abnormalities of human vitreous structure in diabetes. Graefe’s Arch. Clin. Exp. Ophthalmol. 231, 257–260 (1993)CrossRefGoogle Scholar
  37. 37.
    J. Sebag, Diabetic vitreopathy [guest editorial]. Ophthalmology 103, 205–206 (1996)Google Scholar
  38. 38.
    J. Sebag, The Vitreous – Structure, Function, and Pathobiology (Springer, New York, 1989)Google Scholar
  39. 39.
    J. Sebag, Age-related changes in human vitreous structure. Graefe’s Arch. Clin. Exp. Ophthalmol. 225, 89–93 (1987)CrossRefGoogle Scholar
  40. 40.
    J. Sebag, R.R. Ansari, S. Dunker, S.I. Suh, Dynamic light scattering of diabetic vitreopathy. Diabetes Technol. Ther. 1, 169–176 (1999)CrossRefGoogle Scholar
  41. 41.
    J. Aguayo, B. Glaser, A. Mildvan, H.M. Cheng, R.G. Gonzalez, T. Brady, Study of the vitreous liquefaction by NMR spectroscopy and imaging. Invest. Ophthalmol. Vis. Sci. 26, 692–697 (1985)Google Scholar
  42. 42.
    C.W. Oyster, The Human Eye Structure and Function (Sinauer, Sunderland, 1999)Google Scholar
  43. 43.
    S.D. McLeod, Beyond Snellen acuity: the assessment of visual function after refractive surgery. Arch. Ophthalmol. 119, 1371–1373 (2001)CrossRefGoogle Scholar
  44. 44.
    L.B. Sabbagh, Dynamic light scattering focuses on the cornea. Rev. Ref. Surg. 5, 28–31 (2002)Google Scholar
  45. 45.
    R.R. Ansari, A.K. Misra, A.B. Leung, J.F. King, M.B. Datiles III, Noninvasive evaluation of corneal abnormalities using static and dynamic light scattering. Proc. SPIE 4611, 220–229 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    R. Dahm, Dying to See. Sci. Am., 83–89 (October 2004)Google Scholar
  47. 47.
    P.H. Frederikse, D. Garland, J.S. Zigler, J. Piatigorsky, Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (A beta) in mammalian lenses, and A beta has toxic effects on lens epithelial cells. J. Biol. Chem. 271(17), 10169–10174 (1996)CrossRefGoogle Scholar
  48. 48.
    P.H. Frederikse, Amyloid-like protein structure in mammalian ocular lenses. Curr. Eye Res. 20(6), 462–468 (2000)CrossRefGoogle Scholar
  49. 49.
    L.E. Goldstein, J.A. Muffat, R.A. Cherny, R.D. Moir, M.H. Ericsson, X. Huang, C. Mavros, J.A. Coccia, K.Y. Faget, K.A. Fitch, C.L. Masters, R.E. Tanzi, T. Chylack, A.I. Bush, Cytosolic β-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361(9365), 1258–1265 (2003)CrossRefGoogle Scholar
  50. 50.
    J.A. Moncaster, R. Pineda, R.D. Moir, S. Lu, M.A. Burton, J.G. Ghosh, M. Ericsson, S.J. Soscia, A. Mocofanescu, R.D. Folkerth, R.M. Robb, J.R. Kuszak, J.I. Clark, R.E. Tanzi, D.G. Hunter, L.E. Goldstein, Alzheimer’s disease amyloid-b links lens and brain pathology in Down syndrome. PLoS ONE 5(5), e10659 (2010). www.plosone.org
  51. 51.
    S. Frost, R.N. Martins, Y. Kanagasingam, Ocular biomarkers for early detection of Alzheimer’s disease. J. Alzheimers Dis. 22(1), 1–16 (2010)Google Scholar
  52. 52.
    S. Long, R.R. Ansari, Early cataract detection by dynamic light scattering with sparse Bayesian learning. J. Innov. Opt. Health Sci. 2(3), 303–313 (2009)CrossRefGoogle Scholar
  53. 53.
    S. Long, R.R. Ansari, Sparse Bayesian learning for the Laplace transform inversion in dynamic light scattering. J. Comput. Appl. Math. 235, 2861–2872 (2011)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    F.A. Cucinotta, F.K. Manuel, J. Jones, G. Izard, J. Murrey, B. Djojonegro, M. Wear, Space radiation and cataracts in astronauts. Radiat. Res. 156(5), 460–466 (2001)CrossRefGoogle Scholar
  55. 55.
    Z.N. Rastegar, P. Eckart, M. Mertz, Radiation-induced cataract in astronauts and cosmonauts. Graefe’s Arch. Clin. Exp. Ophthalmol. 240(7), 543–547 (2002)CrossRefGoogle Scholar
  56. 56.
    R.R. Ansari, J. Sebag, Non-invasive monitoring of ocular health in space, in Teleophthalmology, ed. by K. Yogesan, S. Kumar, L. Goldschmidt, J. Cuadros (Springer, Berlin, 2006), pp. 267–273 (Chap. 32)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.NASA John H. Glenn Research Center at Lewis FieldClevelandUSA

Personalised recommendations