Skip to main content

Imaging and the Corpus Callosum in Patients with Autism

  • Reference work entry
Comprehensive Guide to Autism

Abstract

The human brain contains an architectural network of white and gray matter structures, fiber connections, and arteries that have been engineered to work synchronously to execute a variety of functions such as walking, talking, thinking, feeling, and perceiving. The structure responsible for the rapid exchange of information necessary for these functions to occur is called the corpus callosum. Researchers have learned a great deal about the structure and function of the corpus callosum through early split-brain investigations in which the corpus callosum was partially or fully ablated from the patient. In recognizing how vital this structure is in performing daily functions, it became apparent that the corpus callosum may be implicated in several neurodevelopmental disorders. This chapter provides an overview of the structure and function of the corpus callosum, common methods of measuring this structure, along with reports of gender dimorphism and atypical findings in autism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboitiz F, Scheibel AB, Fisher RS, Zaidel E. Fiber composition of the human corpus callosum. Brain Res. 1992;598:143–53.

    Article  PubMed  Google Scholar 

  • Achiron R, Lipitz S, Achiron A. Sex-related differences in the development of the human fetal corpus callosum: in utero ultrasonographic study. Prenat Diagn. 2001;21:116–20.

    Article  PubMed  Google Scholar 

  • Alexander AL, Lee JE, Boudos R, DuBray MB, Oakes TR, Miller JN, Lu J, Jeong EK, McMahon WM, Bigler ED, Lainhart JE. Diffusion tensor imaging of the corpus callosum in autism. Neuroimage. 2007;34:61–73.

    Article  PubMed  Google Scholar 

  • Allen LS, Richey MF, Chai YM, Gorski RA. Sex differences in the corpus callosum of the living human being. J Neurosci. 1991;11:933–42.

    PubMed  Google Scholar 

  • Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL, Abildskov T, Nielsen JA, Cariello AN, Cooperrider JR, Bigler ED, Lainhart JE. Decreased interhemispheric functional connectivity in autism. Cereb Cortex. 2011;21:1134–46. doi:10.1093/cercor/bhq190.

    Article  PubMed  Google Scholar 

  • Baars BJ, Gage NM. Cognition, brain, and consciousness: introduction to cognitive neurosciences. 2nd ed. San Diego: Elsevier; 2010.

    Google Scholar 

  • Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry. 2004;55:323–6.

    Article  PubMed  Google Scholar 

  • Brodmann K. Vergleichende lokalisationslehre der großhirnrinde: in ihren prinzipien dargestellt auf grund des zellenbaues. Leipzig: Johann Ambrosius Barth Verlag; 1909.

    Google Scholar 

  • Brodmann K. Brodmann’s localisation in the cerebral cortex. 3rd ed. New York: Springer; 2006.

    Google Scholar 

  • Casanova MF, El-Baz A, Mott M, Mannheim G, Hassan H, Fahmi R, Giedd J, Rumsey JM, Switala AE, Farag A. Reduced gyral window and corpus callosum size in autism: possible macroscopic correlates of a minicolumnopathy. J Autism Dev Disord. 2009;39:751–64. doi:10.1007/s10803-008-0681-4.

    Article  PubMed  Google Scholar 

  • Casanova MF, El-Baz A, Giedd J, Rumsey JM, Switala AE. Increased white matter gyral depth in dyslexia: implications for corticocortical connectivity. J Autism Dev Disord. 2010;40:21–9.

    Article  PubMed  Google Scholar 

  • Chau W, McIntosh AR. The Talairach coordinate of a point in the MNI space: how to interpret it. Neuroimage. 2005;25:408–16. doi:10.1016/j.neuroimage.2004.12.007.

    Article  PubMed  Google Scholar 

  • Clarke S, Kraftsik R, van der Loos H, Innocenti GM. Forms and measures of adult and developing human corpus callosum: is there a sexual dimorphism? J Comp Neurol. 1989;280:213–30.

    Article  PubMed  Google Scholar 

  • Courchesne E. Abnormal early brain development in autism. Mol Psychiatry. 2002;7 (Suppl 2):S21–3.

    Article  PubMed  Google Scholar 

  • De Bellis MD, Keshavan MS, Beers SR, Hall J, Frustaci K, Masalehdan A, Noll J, Boring AM. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex. 2001;11:552–7.

    Article  PubMed  Google Scholar 

  • DeLacoste-Utamsing C, Holloway RL. Sexual dimorphism in the human corpus callosum. Science. 1982;216:1431–2.

    Article  PubMed  Google Scholar 

  • DeLacoste-Utamsing C, Holloway RL, Woodward DJ. Sex difference in the fetal human corpus callosum. Hum Neurobiol. 1986;5:93–6.

    Google Scholar 

  • Demeter S, Ringo JL, Doty RW. Morphometric analysis of the human corpus callosum and anterior commissure. Hum Neurobiol. 1988;6:219–26.

    PubMed  Google Scholar 

  • Duara R, Kushch A, Gross-Glenn K, Barker WW, Jallad B, Pascal S, Loewenstein DA, Sheldon J, Rabin M, Levin B, Lubs H. Neuroanatomic differences between dyslexic and normal readers on magnetic resonance imaging scans. Arch Neurol. 1991;48:410–16.

    Article  PubMed  Google Scholar 

  • Egaas B, Courchesne E, Saitoh O. Reduced size of corpus callosum in autism. Arch Neurol. 1995;52:794–801.

    Article  PubMed  Google Scholar 

  • Fabri M, Del Pesce M, Paggi A, Polonara G, Bartolini M, Salvolini U, Manzoni T. Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information. Brain Res Cogn Brain Res. 2005;24:73–80. doi:10.1016/j.cogbrainres.2004.12.003.

    Article  PubMed  Google Scholar 

  • Francis AN, Bhojraj TS, Prasad KM, Kulkarni S, Montrose DM, Eack SM, Keshavan MS. Abnormalities of the corpus callosum in non-psychotic high-risk offspring of schizophrenia patients. Psychiatry Res. 2011;191:9–15. doi:10.1016/j.pscychresns.2010.09.007.

    Article  PubMed  Google Scholar 

  • Frazier TW, Keshavan MS, Minshew NJ, Hardan AY. A two-year longitudinal MRI study of the corpus callosum in autism. J Autism Dev Disord. 2012. Nov; 42(11):2312–2322. doi:10.1007/s10803-012-1478-z.

    PubMed  Google Scholar 

  • Gazzaniga MS, Ivry RB, Mangun GR. Cognitive neuroscience: the biology of the mind. New York: W.W. Norton; 1998.

    Google Scholar 

  • Geschwind N, Galaburda AM. Cerebral lateralization: biological mechanisms, associations and pathology II. A hypothesis and a program for research. Arch Neurol. 1985;42:521–52.

    Article  PubMed  Google Scholar 

  • Giedd JN, Castellanos FX, Casey BJ, Kozuch P, King AC, Hamburger SD, Rappoport JL. Quantitative morphology of the corpus callosum in attention deficit hyperactivity disorder. Am J Psychiatry. 1994;151:665–9.

    PubMed  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Rajapakse JC, Vaituzis AC, Liu H, Berry YC, Tobin M, Nelson J, Castellanos FX. Development of the human corpus callosum during childhood and adolescence: a longitudinal MRI study. Prog Neuropsychopharmacol Biol Psychiatry. 1999;23:571–88.

    Article  PubMed  Google Scholar 

  • Griffiths PD, Batty R, Reeves MJ, Connolly DJ. Imaging the corpus callosum, septum pellucidum and fornix in children: normal anatomy and variations of normality. Neuroradiology. 2009;51:337–45. doi:10.1007/s00234-009-0506-y.

    Article  PubMed  Google Scholar 

  • Hardan AY, Pabalan M, Gupta N, Bansal R, Melhem NM, Fedorov S, Keshavan MS, Minshew NJ. Corpus callosum volume in children with autism. Psychiatry Res. 2009;174:57–61. doi:10.1016/j.pscychresns.2009.03.005.

    Article  PubMed  Google Scholar 

  • Harris LJ. Sex differences and spatial ability: possible environmental, genetic and neurological factors. In: Kinsbourne M, editor. Asymmetric function of the brain. Cambridge: Cambridge University Press; 1978. p. 405–522.

    Google Scholar 

  • Hynd GW, Semrud-Clikeman M, Lorys AR, Novey ES, Eliopulos D. Brain morphology in developmental dyslexia and attention deficit disorder/hyperactivity. Arch Neurol. 1990;47:919–26.

    Article  PubMed  Google Scholar 

  • Hynd GW, Semrud-Clikeman M, Lorys AR, Novey ES, Eliopulos D, Lyytinen H. Corpus callosum morphology in attention deficit-hyperactivity disorder: morphometric analysis of MRI. J Learn Disabil. 1991;24:141–6.

    Article  PubMed  Google Scholar 

  • Hynd GW, Hall J, Novey ES, Eliopulos D, Black K, Gonzalez JJ, Edmonds JE, Riccio C, Cohen M. Dyslexia and corpus callosum morphology. Arch Neurol. 1995;52:32–8.

    Article  PubMed  Google Scholar 

  • Jacobsen LK, Giedd JN, Rajapakse JC, Hamburger SD, Vaituzis AC, Frazier JA, Lenane MC, Rapoport JL. Quantitative magnetic resonance imaging of the corpus callosum in childhood onset schizophrenia. Psychiatry Res. 1997;68:77–86.

    Article  PubMed  Google Scholar 

  • Keary CJ, Minshew NJ, Bansal R, Goradia D, Fedorov S, Keshavan MS, Hardan AY. Corpus callosum volume and neurocognition in autism. J Autism Dev Disord. 2009;39:834–41.

    Article  PubMed  Google Scholar 

  • Kimura D. Are men’s and women’s brain really different? Can Psychol. 1987;28:133–47.

    Article  Google Scholar 

  • Kimura D. Sex, sexual orientation and sex hormones influence human cognitive function. Curr Opin Neurobiol. 1996;6:259–63. doi:10.1016/S0959-4388(96)80081-X.

    Article  PubMed  Google Scholar 

  • Lenroot R, Giedd J. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30:718–29. doi:10.1016/j.neubiorev.2006.06.001.

    Article  PubMed  Google Scholar 

  • Manes F, Piven J, Vrancic D, Nanclares V, Plebst C, Starkstein SE. An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. J Neuropsychiatry Clin Neurosci. 1999;11:470–4.

    PubMed  Google Scholar 

  • Myers JJ, Sperry RW. Interhemispheric communication after section of the forebrain commissures. Cortex. 1985;21:249–60.

    Article  PubMed  Google Scholar 

  • Nasrallah HA, Andreasen NC, Coffman JA, Olson SC, Dunn VD, Ehrhardt JC, Chapman SM. A controlled magnetic resonance imaging study of corpus callosum thickness in schizophrenia. Biol Psychiatry. 1986;21:274–82.

    Article  PubMed  Google Scholar 

  • Piven J, Bailey J, Ranson BJ, Arndt S. An MRI study of the corpus callosum in autism. Am J Psychiatry. 1997;154:1051–6.

    PubMed  Google Scholar 

  • Prothero JW, Sundsten JW. Folding of the cerebral cortex in mammals: a scaling model. Brain Behav Evol. 1984;24:152–67. doi:10.1159/000121313.

    Article  PubMed  Google Scholar 

  • Pujol J, Vendrell P, Junqué C, Martí-Vilalta JL, Capdevila A. When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol. 1993;34:71–5.

    Article  PubMed  Google Scholar 

  • Rakic P, Yakovlev PI. Development of the corpus callosum and cavum septi in man. J Comp Neurol. 1968;132:45–72.

    Article  PubMed  Google Scholar 

  • Rippon G, Brock J, Brown C, Boucher J. Disordered connectivity in the autistic brain: challenges for the “new psychophysiology”. Int J Psychophysiol. 2007;63:164–72. doi:10.1016/j.ijpsycho.2006.03.012.

    Article  PubMed  Google Scholar 

  • Roberts JE, Bell MA. Sex differences on a mental rotation task: variations in electroencephalogram hemispheric activation between children and college students. Dev Neuropsychol. 2000;17:199–223.

    Article  PubMed  Google Scholar 

  • Standring S. Gray’s anatomy: the anatomical basis of clinical practive. 39th ed. Edinburgh: Churchill Livingstone; 2005.

    Google Scholar 

  • Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry. 2008;23:289–99.

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-D proportional system: an approach to cerebral imaging. Stuttgart: Thieme; 1988.

    Google Scholar 

  • Talairach J, Szikla G, Tournoux P, Prossalentis A, Bordas-Ferrer M, Covello L, Iacob M, Mempel E. Atlas d’anatomie stéréotaxique du télencéphale. Paris: Masson; 1967.

    Google Scholar 

  • Tepest R, Jacobi E, Gawronski A, Krug B, Moller-Hartmann W, Lehnhardt FG, Vogeley K. Corpus callosum size in adults with high-functioning autism and the relevance of gender. Psychiatry Res. 2010;183:38–43. doi:10.1016/j.pscychresns.2010.04.007.

    Article  PubMed  Google Scholar 

  • Tomasch J. Size, distribution and number of fibers in the human corpus callosum. Anat Rec. 1954;119:110–35.

    Article  Google Scholar 

  • Ture U, Yasargil MG, Krisht AF. The arteries of the corpus callosum: a microsurgical anatomic study. Neurosurgery. 1996;39:1075–85.

    Article  PubMed  Google Scholar 

  • Witelson SF. Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain. 1989;112:799–835.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Casanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Casanova, M.F., Dombroski, B., Switala, A.E. (2014). Imaging and the Corpus Callosum in Patients with Autism. In: Patel, V., Preedy, V., Martin, C. (eds) Comprehensive Guide to Autism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4788-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4788-7_50

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4787-0

  • Online ISBN: 978-1-4614-4788-7

  • eBook Packages: Behavioral Science

Publish with us

Policies and ethics