Skip to main content

Modal Analysis of Nonlinear Mechanical Systems

  • Reference work entry
  • First Online:
Handbook of Experimental Structural Dynamics
  • 1456 Accesses

Abstract

The objective of this chapter is to introduce nonlinear normal modes (NNMs) to structural dynamicists who are not acquainted with them. Specifically, this chapter describes how the concept of modes can be extended to the nonlinear case. It also describes, in simple terms, the fundamental properties of NNMs, including frequency-energy dependence, harmonics, bifurcation, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Craig R, Bampton M (1968) Coupling of substructures for dynamic analysis. AIAA J 6:1313–1319

    Article  MATH  Google Scholar 

  2. Ewins DJ (2000) Modal testing: theory, practice and application, 2nd edn. Research Studies Press LTD, Hertfordshire

    Google Scholar 

  3. Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Kluwer Academic Publishers, London

    Book  MATH  Google Scholar 

  4. Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review, Los Alamos National Laboratory Report LA-13070-MS

    Google Scholar 

  5. Kerschen G, Worden K, Vakakis AF, Golinval JC (2006) Past, present and future of nonlinear system identification in structural dynamics. Mech Syst Signal Process 20:505–592

    Article  Google Scholar 

  6. Rosenberg RM (1960) Normal modes of nonlinear dual-mode systems. J Appl Mech 27: 263–268

    Article  MathSciNet  MATH  Google Scholar 

  7. Rosenberg RM (1962) The normal modes of nonlinear n-degree-of-freedom systems. J Appl Mech 29:7–14

    Article  MathSciNet  MATH  Google Scholar 

  8. Rosenberg RM (1966) On nonlinear vibrations of systems with many degrees of freedom. Adv Appl Mech 9:155–242

    Article  Google Scholar 

  9. Rand R (1971) Nonlinear normal modes in two-degree-of-freedom systems. Journal of Applied Mechanics 38:561.

    Article  Google Scholar 

  10. Rand R (1971) A higher-order approximation for nonlinear normal modes in two-degree-of-freedom systems. Int J Nonlinear Mech 6:545–547

    Article  MATH  Google Scholar 

  11. Rand R (1974) A direct method for nonlinear normal modes. Int J Nonlinear Mech 9:363–368

    Article  MATH  Google Scholar 

  12. Manevitch LI, Mikhlin YV (1972) On periodic solutions close to rectilinear normal vibration modes. PMM 36:1051–1058

    Google Scholar 

  13. Vakakis AF (1990) Analysis and identification of linear and nonlinear normal modes in vibrating systems. Ph.D. Dissertation, California Institute of Technology

    Google Scholar 

  14. Caughey TK, Vakakis AF, Sivo JM (1990) Analytical study of similar normal modes and their bifurcations in a class of strongly nonlinear systems. Int J Nonlinear Mech 25:521–533

    Article  MathSciNet  Google Scholar 

  15. Vakakis AF (1992) Non-similar normal oscillations in a strongly non-linear discrete system. J Sound Vib 159:341–361

    Article  MATH  Google Scholar 

  16. King ME, Vakakis AF (1994) An energy-based formulation for computing nonlinear normal-modes in undamped continuous systems. J Sound Vib 116:332–340

    Google Scholar 

  17. Vakakis AF, Manevitch LI, Mikhlin YV, Pilipchuk VN, Zevin AA (1996) Normal modes and localization in nonlinear systems. John Wiley & Sons, New York

    Book  MATH  Google Scholar 

  18. Vakakis AF (1997) Non-linear normal modes and their applications in vibration theory: an overview. Mech Syst Signal Process 11:3–22

    Article  Google Scholar 

  19. Shaw SW, Pierre C (1991) Non-linear normal modes and invariant manifolds. J Sound Vib 150:170–173

    Article  Google Scholar 

  20. Shaw SW, Pierre C (1992) On nonlinear normal modes. ASME Winter Annual Meeting

    Google Scholar 

  21. Shaw SW, Pierre C (1993) Normal modes for non-linear vibratory systems. J Sound Vib 164:85–124

    Article  MATH  Google Scholar 

  22. Shaw SW, Pierre C (1994) Normal modes of vibration for non-linear continuous systems. J Sound Vib 169:319–347

    Article  MATH  Google Scholar 

  23. Jezequel L, Lamarque CH (1991) Analysis of nonlinear dynamic systems by the normal form theory. J Sound Vib 149:429–459

    Article  Google Scholar 

  24. Yabuno H, Nayfeh AH (2001) Nonlinear normal modes of a parametrically excited cantilever beam. Nonlinear Dyn 25:65–77

    Article  MathSciNet  MATH  Google Scholar 

  25. Xie WC, Lee HP, Lim SP (2003) Nonlinear dynamic analysis of MEMS switches by nonlinear modal analysis. Nonlinear Dyn 31:243–256

    Article  MATH  Google Scholar 

  26. Mazzilli CEN, Soares MES, Baracho Neto GP (2004) Non-linear normal modes of a simply supported beam: continuous system and finite-element models. Comput Struct 82: 2683–2691

    Article  Google Scholar 

  27. Gendelman OV (2004) Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn 37:115–128

    Article  MathSciNet  MATH  Google Scholar 

  28. Lacarbonara W, Camillacci R (2004) Nonlinear normal modes of structural systems via asymptotic approach. Int J Solids Struct 41:5565–5594

    Article  MATH  Google Scholar 

  29. Lee YS, Kerschen G, Vakakis AF, Panagopoulos PN, Bergman LA, McFarland DM (2005) Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Physica D 204:41–69

    Article  MathSciNet  MATH  Google Scholar 

  30. Dick AJ, Balachandran B, Mote CD (2006) Nonlinear vibration modes in micro-resonator arrays. In: Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, Proceedings of the SPIE, vol 6166, pp 206–217

    Google Scholar 

  31. Touzé C, Amabili M (2006) Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures. J Sound Vib 298:958–981

    Article  Google Scholar 

  32. Srinil N, Rega G (2007) Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: Internal resonance activation, reduced-order models and nonlinear normal modes. Nonlinear Dyn 48:253–274

    Article  MATH  Google Scholar 

  33. Lenci S, Rega G (2007) Dimension reduction of homoclinic orbits of buckled beams via the non-linear normal modes technique. Int J Nonlinear Mech 42:515–528

    Article  MATH  Google Scholar 

  34. Lacarbonara W, Paolone A, Vestroni F (2007) Non-linear modal properties of non-shallow cables. Int J Nonlinear Mech 42:542–554

    Article  MATH  Google Scholar 

  35. Cochelin B, Vergez C (2009) A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J Sound Vib 324:243–262

    Article  Google Scholar 

  36. Laxalde D, Thouverez F, Complex non-linear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces. J Sound Vib 322 (2009), 1009–1025.

    Article  Google Scholar 

  37. Kuether RJ, Allen MS (2014) A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models. Mech Syst Signal Process 46:1–15

    Article  Google Scholar 

  38. Hill TL, Cammarano A, Neild SA, Wagg DJ (2015) Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves. J Sound Vib 349: 276–288

    Article  Google Scholar 

  39. Renson L, A. Gonzalez-Buelga, Barton DAW, Neild SA, Robust identification of backbone curves using control-based continuation. Journal of Sound and Vibration 367 (2016), 145–158.

    Google Scholar 

  40. Hill TL, Cammarano A, Neild SA, Barton DAW (2017) Identifying the significance of nonlinear normal modes. Proc R Soc A 473:20160789

    Article  MathSciNet  MATH  Google Scholar 

  41. Scheel M, Peter S, Leine RI, Krack M (2018) A phase resonance approach for modal testing of structures with nonlinear dissipation. J Sound Vib 435:56–73

    Article  Google Scholar 

  42. Ribeiro P, Thomas O (2017) Nonlinear modes of vibration and internal resonances in nonlocal beams. J Comput Nonlinear Dyn 12:031017

    Article  Google Scholar 

  43. Song M, Renson L, Noel JP, Moaveni B, Kerschen G (2018) Bayesian model updating of nonlinear systems using nonlinear normal modes. Struct Control Health Monit 25:e2258

    Article  Google Scholar 

  44. Haller G, Ponsioen S (2016) Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn 86:1493–1534

    Article  MathSciNet  MATH  Google Scholar 

  45. Krack M (2015) Nonlinear modal analysis of nonconservative systems: extension of the periodic motion concept. Comput Struct 154:59–71

    Article  Google Scholar 

  46. Peeters M, Viguié R, Sérandour G, Kerschen G, Golinval JC (2009) Nonlinear normal modes, Part II: toward a practical computation using numerical continuation. Mech Syst Signal Process 23:170–194

    Article  Google Scholar 

  47. Nayfeh AH (2000) Nonlinear interactions: analytical, computational and experimental methods. Wiley-Interscience, New York

    MATH  Google Scholar 

  48. SS. Oueini, Chin CM, Nayfeh AH (1999) Dynamics of a cubic nonlinear vibration absorber. Nonlinear Dyn 20:283–295

    Article  MATH  Google Scholar 

  49. Noel JP, Renson L, Kerschen G (2014) Complex dynamics of a nonlinear aerospace structure: experimental identification and modal interactions. J Sound Vib 333:2588–2607

    Article  Google Scholar 

  50. Renson L, Noel JP, Kerschen G (2015) Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes. Nonlinear Dyn 79:1293–1309

    Article  Google Scholar 

  51. Claeys M, Sinou JJ, Lambelin JP, Todeschini R (2016) Modal interactions due to friction in the nonlinear vibration response of the “Harmony” test structure: experiments and simulations. J Sound Vib 376:131–148

    Article  Google Scholar 

  52. Kerschen G, Peeters M, Golinval JC, Stephan C (2013) Nonlinear modal analysis of a full-scale aircraft. AIAA J Aircr 50:1409–1419

    Article  Google Scholar 

  53. Pak CH (2006) Synge’s concept of stability applied to non-linear normal modes. Int J Nonlinear Mech 41:657–664

    Article  MathSciNet  MATH  Google Scholar 

  54. Recktenwald G, Rand R (2007) Stability of strongly nonlinear normal modes. Commun Nonlinear Sci Numer Simul 12:1128–1132

    Article  MATH  Google Scholar 

  55. King ME, Vakakis AF (1995) An energy-based approach to computing resonant nonlinear normal modes. J Appl Mech 63:810–819

    Article  MathSciNet  MATH  Google Scholar 

  56. Boivin N, Pierre C, Shaw SW (1995) Non-linear modal analysis of structural systems featuring internal resonances. J Sound Vib 182:336–341

    Article  Google Scholar 

  57. Slater JC (1996) A numerical method for determining nonlinear normal modes. Nonlinear Dyn 10:19–30

    Article  Google Scholar 

  58. Cochelin B, Damil N, Potier-Ferry M (1994) Asymptotic numerical methods and Padé approximants for nonlinear elastic structures. Int J Numer Methods Eng 37:1187–1213

    Article  MATH  Google Scholar 

  59. Pérignon F (2004) Vibration forcées de structures minces, élastiques, non-linéaires. Ph.D. Thesis, Université de la Méditerrané, Marseille

    Google Scholar 

  60. Arquier R, Bellizzi S, Bouc R, Cochelin B (2006) Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes. Comput Struct 84:1565–1576

    Article  MathSciNet  Google Scholar 

  61. Thouverez F (2003) Presentation of the ECL benchmark. Mech Syst Signal Process 17: 195–202

    Article  Google Scholar 

  62. Pesheck E (2000) Reduced-order modeling of nonlinear structural systems using nonlinear normal modes and invariant manifolds. Ph.D. Thesis, University of Michigan, Ann Arbor

    Google Scholar 

  63. Touzé C, Thomas O, Chaigne A (2004) Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes. J Sound Vib 273:77–101

    Article  Google Scholar 

  64. C. Touzé, Amabili M, Thomas O (2007) Reduced-order models for large-amplitude vibrations of shells including in-plane inertia. In: Proceedings of the EUROMECH Colloquium on Geometrically Nonlinear Vibrations, Porto

    MATH  Google Scholar 

  65. Peeters M, Kerschen G, Golinval JC (2011) Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech Syst Signal Process 25:1227–1247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kerschen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kerschen, G., Vakakis, A.F. (2022). Modal Analysis of Nonlinear Mechanical Systems. In: Allemang, R., Avitabile, P. (eds) Handbook of Experimental Structural Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4547-0_35

Download citation

Publish with us

Policies and ethics