Skip to main content

DIC and Photogrammetry for Structural Dynamic Analysis and High-Speed Testing

  • Reference work entry
  • First Online:
Handbook of Experimental Structural Dynamics

Abstract

This chapter provides an overview and some important considerations to be made when making optical and stereophotogrammetry measurements on structures for dynamic applications. In particular, the chapter focuses on leveraging those measurements to perform digital image correlation (DIC) to extract dynamic parameters (e.g., strain, deflection, operating shapes, and mode shapes). Structural dynamic testing and analysis in the context of performing optical measurements is described. Information on optical high rate testing is also presented along with lessons learned and best practices.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrego AI, Olson LE, Romander EA, Barrows DA, Burner AW (2012) Blade displacement measurement technique applied to a full-scale rotor test. American Helicopter Society 68th annual forum proceedings, Fort Worth, 1–3 May 2012

    Google Scholar 

  2. Aramis – User Manual-Software; Aramis v6.1 and higher, 2018. https://www.gom.com

  3. Avitabile P, Niezrecki C, Helfrick M, Warren CP, Pingle P (2010) Noncontact measurement techniques for model correlation. Sound and Vibration Magazine, January, pp 8–12

    Google Scholar 

  4. Baqersad J, Bharadwaj K (2018) Strain reduction expansion approach. Mech Syst Signal Process 101:156–167. https://doi.org/10.1016/j.ymssp.2017.08.023

    Article  Google Scholar 

  5. Baqersad J, Niezrecki C, Avitabile P (2015a) Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry. Mech Syst Signal Process 62:284–295. https://doi.org/10.1016/j.ymssp.2015.03.021

    Article  Google Scholar 

  6. Baqersad J, Niezrecki C, Avitabile P (2015b) Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique. J Sound Vib 352:16–29. https://doi.org/10.1016/j.jsv.2015.04.026

    Article  Google Scholar 

  7. Baqersad J, Poozesh P, Niezrecki C, Avitabile P (2016a) Photogrammetry and optical methods in structural dynamics – a review. Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2016.02.011

  8. Baqersad J, Poozesh P, Niezrecki C, Avitabile P (2016b) A noncontacting approach for full-field strain monitoring of rotating structures. J Vib Acoust 138:031008. https://doi.org/10.1115/1.4032721

    Article  Google Scholar 

  9. Bartilson DT, Wieghaus KT, Hurlebaus S (2015) Target-less computer vision for traffic signal structure vibration studies. Mech Syst Signal Process 60–61:571–582. https://doi.org/10.1016/j.ymssp.2015.01.005

    Article  Google Scholar 

  10. Bateman VI, Mayes RL, Carne TG (1997) Comparison of force reconstruction methods for a lumped mass beam. Shock Vib 4(4):231–239

    Article  Google Scholar 

  11. Beberniss TJ, Ehrhardt DA (2017) High-speed 3D digital image correlation vibration measurement: recent advances and noted limitations. Mech Syst Signal Process 86:38–48

    Article  Google Scholar 

  12. Bharadwaj K, Baqersad J, Poozesh P (2016) Modal expansion using strain mode shapes. In: IMAC XXXV, Garden Grove

    Google Scholar 

  13. Blevins RD (1979) Formulas for natural frequency and mode shape. Van Nostrand Reinhold. ISBN 10: 0442207107/ISBN 13: 9780442207106

    Google Scholar 

  14. Burguete RL, Lampeas G, Mottershead JE, Patterson EA, Pipino A, Siebert T, Wang W (2013) Analysis of displacement fields from a high-speed impact using shape descriptors. J Strain Anal Eng Design

    Google Scholar 

  15. Burtch R (2004) History of photogrammetry. Notes of the Center for Photogrammetric Training

    Google Scholar 

  16. Carr J, Baqersad J, Niezrecki C, Avitabile P (2015) Full-field dynamic strain on wind turbine blade using digital image correlation techniques and limited sets of measured data from photogrammetric targets. Exp Tech. https://doi.org/10.1111/ext.12129

  17. Castellini P, Martarelli M, Tomasini EP (2006) Laser Doppler vibrometry: development of advanced solutions answering to technology’s needs. Mech Syst Signal Process 20(6):1265–1285

    Article  Google Scholar 

  18. Chen X, Xu N, Yang L, Xiang D (2012) High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system. Meas Sci Technol 23:125603

    Article  Google Scholar 

  19. Cooper MA, Skaggs MN, Reu PL (2016) High-speed stereomicroscope digital image correlation of rupture disc behavior. In: Advancement of optical methods in experimental mechanics, vol 3. Springer, Cham, pp 19–26

    Google Scholar 

  20. D’Emilia G, Razzè L, Zappa E (2013) Uncertainty analysis of high frequency image-based vibration measurements. Measurement 46:2630–2637. https://doi.org/10.1016/j.measurement.2013.04.075

    Article  Google Scholar 

  21. dos Santos F, Peeters B, Lau J, Desmet W, Góes L (2014) An overview of experimental strain-based modal analysis methods. In: Proceedings of the international conference on noise and vibration engineering (ISMA), Leuven

    Google Scholar 

  22. Ehrhardt DA, Yang S, Beberniss TJ, Allen MS (2014) Mode shape comparison using continuous-scan laser Doppler vibrometry and high speed 3D digital image correlation. In: Special topics in structural dynamics, vol 6. Springer, Cham, pp 321–331

    Google Scholar 

  23. Gagliardi FC, Cunningham B (2010) The use of digital image correlation in explosive experiments. In: 14th Annual detonation symposium, Coeur d’Alene, 11–16 April 2010

    Google Scholar 

  24. Gilbert MG, Welch SS, Pappa RS, Demeo ME (1997) STS-74/Mir photogrammetric appendage structural dynamics experiment preliminary data analysis. In: Proceedings of the 1997 38th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. Part 4 (of 4), 7–10 April 1997. AIAA, Kissimmee, pp 566–576

    Google Scholar 

  25. Ha NS, Vang HM, Goo NS (2015) Modal analysis using digital image correlation technique: an application to artificial wing mimicking beetle’s hind wing. Exp Mech 55:989–998. https://doi.org/10.1007/s11340-015-9987-2

    Article  Google Scholar 

  26. Helfrick MN, Pingle P, Niezrecki C, Avitabile P (2009) Optical non-contacting vibration measurement of rotating turbine blades. In: 27th Conference and exposition on structural dynamics 2009, IMAC XXVII, 9–12 February 2009. Springer/Society for Experimental Mechanics (SEM), New York

    Google Scholar 

  27. Helfrick MN, Niezrecki C, Avitabile P, Schmidt T (2011) 3D digital image correlation methods for full-field vibration measurement. Mech Syst Signal Process 25:917–927. https://doi.org/10.1016/j.ymssp.2010.08.013

    Article  Google Scholar 

  28. IDIC (2018) iDIC good practice guide. International Digital Image Correlation Society website. www.idics.org. Accessed 2018

  29. Ind P (2004) The non-intrusive modal testing of delicate and critical structures. PhD thesis, Imperial College of Science, Technology & Medicine, University of London, London

    Google Scholar 

  30. IRIG (2018a) Inter-Range Instrumentation Group. https://en.wikipedia.org/wiki/Inter-Range_Instrumentation_Group. Accessed 2018

  31. IRIG (2018b) Time code. Accessed 2018. https://en.wikipedia.org/wiki/IRIG_timecode

  32. Jones EMC, Reu PL (2017) Distortion of digital image correlation (DIC) displacements and strains from heat waves. Exp Mech. https://doi.org/10.1007/s11340-017-0354-3

  33. Kammer DC (Mar 1991) Sensor placement for on-orbit modal identification and correlation of large space structures. J Guid Control Dyn 14:251–259

    Article  Google Scholar 

  34. LePage WS, Daly SH, Shaw JA (2016) Cross polarization for improved digital image correlation. Exp Mech 56:1–17

    Article  Google Scholar 

  35. Lundstrom T, Baqersad J, Niezrecki C, Avitabile P (2012) Using high-speed stereophotogrammetry techniques to extract shape information from wind turbine/rotor operating data. In: 30th IMAC, a conference on structural dynamics, 30 January 2012–2 February 2012. Springer New York/Jacksonville, pp 269–275. https://doi.org/10.1007/978-1-4614-2419-2_26

  36. Lundstrom T, Niezrecki C, Avitabile P (2013) Appropriate rigid body correction of stereophotogrammetry measurements made on rotating systems. Exp Tech. https://doi.org/10.1111/ext.12030

  37. Lundstrom T, Baqersad J, Niezrecki C (2015) Monitoring the dynamics of a helicopter main rotor with high-speed stereophotogrammetry. Exp Tech. https://doi.org/10.1111/ext.12127

  38. Luo PF, Chao YJ, Sutton MA, Peters WH III (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33:123–132

    Article  Google Scholar 

  39. Meng LB, Jin GC, Yao XF (2007) Application of iteration and finite element smoothing technique for displacement and strain measurement of digital speckle correlation. Opt Lasers Eng 45:57–63. https://doi.org/10.1016/j.optlaseng.2006.04.012

    Article  Google Scholar 

  40. Miller TJ, Schreier HW, Reu P (2007) High-speed DIC data analysis from a shaking camera system. Society for Experimental Mechanics, Springfield

    Google Scholar 

  41. Mitchell LD (1982) Improved methods for the FFT calculation of the frequency response function. J Mech Des 104:277–279

    Google Scholar 

  42. Mitchell LD, Deel JC (1987) An unbiased frequency response function estimator. In Proceedings of the 5th international modal analysis conference, London

    Google Scholar 

  43. Mohanty P, Rixen DJ (2004) Operational modal analysis in the presence of harmonic excitation. J Sound Vib 270:93–109

    Article  Google Scholar 

  44. Moulart R, Pierron F, Hallett SR, Wisnom MR (2011) Full-field strain measurement and identification of composites moduli at high strain rate with the virtual fields method. Exp Mech 51(4):509–536

    Article  Google Scholar 

  45. Niezrecki C, Avitable P, Warren C, Pingle P, Helfrick M (2010) A review of digital image correlation applied to structural dynamics. In: Proceedings of the 9th international conference on vibration measurements by laser and noncontact techniques, Ancona, 22–25 June 2010

    Google Scholar 

  46. Nonis C, Niezrecki C, Yu T, Ahmed S, Su C, Schmidt T (2013) Implementation of digital image correlation for structural health monitoring of bridges. In: Proceedings of 9th international workshop on structural health monitoring, Stanford/Palo Alto, 10–12 September 2013

    Google Scholar 

  47. O’Callahan J, Avitabile P, Riemer R (1989) System equivalent reduction expansion process (SEREP). In: Proceedings of the 7th international modal analysis conference, Union College Schnectady, pp 29–37

    Google Scholar 

  48. Ozbek M, Rixen DJ (2013) Operational modal analysis of a 2.5 MW wind turbine using optical measurement techniques and strain gauges. Wind Energy 16:367–381. https://doi.org/10.1002/we.1493

    Article  Google Scholar 

  49. Ozbek M, Rixen DJ, Erne O, Sanow G (2010) Feasibility of monitoring large wind turbines using photogrammetry. Energy 35:4802–4811. https://doi.org/10.1016/j.energy.2010.09.008

    Article  Google Scholar 

  50. Pan B, Asundi A, Xie H, Gao J (2009) Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Opt Lasers Eng 47:865–874. https://doi.org/10.1016/j.optlaseng.2008.10.014

    Article  Google Scholar 

  51. Pan B, Wu D, Xia Y (2012) An active imaging digital image correlation method for deformation measurement insensitive to ambient light. Opt Laser Technol 44:204–209. https://doi.org/10.1016/j.optlastec.2011.06.019

    Article  Google Scholar 

  52. Peters WH, Ranson WF (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21:213427. https://doi.org/10.1117/12.7972925

    Article  Google Scholar 

  53. Poozesh P, Baqersad J, Niezrecki C, Avitabile P, Harvey E, Yarala R (2016) Large-area photogrammetry based testing of wind turbine blades. Mech Syst Signal Process. https://doi.org/10.1016/j.ymssp.2016.07.021

  54. Reu P (2012) Stereo-rig design: creating the stereo-rig layout – part 1. Exp Tech 36:3–4. https://doi.org/10.1111/j.1747-1567.2012.00871.x

    Article  Google Scholar 

  55. Reu P (2013a) Stereo-rig design: lighting – part 5. Exp Tech 37(3):1–2

    Article  Google Scholar 

  56. Reu P (2013b) Stereo-rig design: stereo-angle selection – part 4. Exp Tech 37:1–2. https://doi.org/10.1111/ext.12006

    Article  Google Scholar 

  57. Reu P (2013c) A study of the influence of calibration uncertainty on the global uncertainty for digital image correlation using a Monte Carlo approach. Exp Mech 53(9):1661–1680

    Article  Google Scholar 

  58. Reu P (2014a) All about speckles: aliasing. Exp Tech 38(5):1–3

    Article  Google Scholar 

  59. Reu P (2014b) Speckles and their relationship to the digital camera. Exp Tech 38(4):1–2

    Article  MathSciNet  Google Scholar 

  60. Reu P (2014c) All about speckles: speckle size measurement. Exp Tech 38(6):1–2

    Article  Google Scholar 

  61. Reu P (2015a) All about speckles: contrast. Exp Tech 39(1):1–2

    Article  Google Scholar 

  62. Reu P (2015b) All about speckles: edge sharpness. Exp Tech 39:1–2. https://doi.org/10.1111/ext.12139

    Article  Google Scholar 

  63. Reu P (2015c) Virtual strain gage size study. Exp Tech 39:1–3. https://doi.org/10.1111/ext.12172

    Article  Google Scholar 

  64. Reu P (2015d) All about speckles: speckle density. Exp Tech 39(3):1–2

    Article  Google Scholar 

  65. Reu P (2016) A realistic error budget for two dimension digital image correlation. In: Jin H et al (eds) Advancement of optical methods in experimental mechanics, vol 3. Proceedings of the 2015 annual conference on experimental and applied mechanics. Springer International Publishing, Cham, pp 189–193

    Google Scholar 

  66. Reu PL, Miller TJ (2008) The application of high-speed digital image correlation. J Strain Anal Eng Des 43(8):673–688

    Article  Google Scholar 

  67. Reu P, Miller TJ (2009) Synchronization errors in high-speed digital image correlation. Society for Experimental Mechanics, Bethel

    Google Scholar 

  68. Reu PL, Rohe DP, Jacobs LD (2017) Comparison of DIC and LDV for practical vibration and modal measurements. Mech Syst Signal Process 86:2–16

    Article  Google Scholar 

  69. Sabato A, Niezrecki C (2017) Feasibility of digital image correlation for railroad tie inspection and ballast support assessment. Measurement 103. https://doi.org/10.1016/j.measurement.2017.02.024

  70. Schmidt T, Tyson J (2009) 3D and 2D high speed image correlation for dynamic testing. Society for Experimental Mechanics Annual Meeting, Albuquerque

    Google Scholar 

  71. Schmidt T, Tyson J, Galanulis K, Revilock D, Melis M (2005) Full-field dynamic deformation and strain measurements using high-speed digital cameras. In: 26th International congress on high speed photography and photonics, vol 5580, pp 174–185

    Google Scholar 

  72. Siebert T, Wang WZ, Mottershead JE, Pipino A (2011) Application of high speed image correlation for measurement of mode shapes of a car bonnet. Appl Mech Mater 70:45–50

    Article  Google Scholar 

  73. Son K-S, Jeon H-S, Park J-H, Park JW (2015) Vibration displacement measurement technology for cylindrical structures using camera images. Nucl Eng Technol 47:488–499. https://doi.org/10.1016/j.net.2015.01.011

    Article  Google Scholar 

  74. Spranghers K, Vasilakos I, Lecompte D, Sol H, Vantomme J (2012) Full-field deformation measurements of aluminum plates under free air blast loading. Exp Mech 52(9):1371–1384

    Article  Google Scholar 

  75. Stasicki B, Boden F (2009) Application of high-speed videography for in-flight deformation measurements of aircraft propellers. In: 28th International congress on high-speed imaging and photonics, 9–14 November 2008. SPIE, Canberra. https://doi.org/10.1117/12.822046

  76. Stasicki B, Boden F (2015) In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system. In: International conference on experimental mechanics 2014, ICEM 2014, 15–17 November 2014. SPIE, Singapore. https://doi.org/10.1117/12.2081393

  77. Surrel Y, Fournier N, Grédiac M, Paris P-A (1999) Phase-stepped deflectometry applied to shape measurement of bent plates. Exp Mech 39(1):66–70. https://doi.org/10.1007/BF02329303

    Article  Google Scholar 

  78. Sutton MA (2008) Digital image correlation for shape and deformation measurements, Chapter 20. In: Handbook of experimental solid mechanics. Springer Science+Business Media, New York, pp 565–600. ISBN: 978-0-387-26883-5

    Chapter  Google Scholar 

  79. Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X (2006) Metrology in a scanning electron microscope: theoretical developments and experimental validation. Meas Sci Technol 17:2613

    Article  Google Scholar 

  80. Sutton MA, Yan JH, Tiwari V, Schreier HW, Orteu JJ (2008) The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng 46(10):746–757

    Article  Google Scholar 

  81. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science+Business Media, New York

    Google Scholar 

  82. Tiwari V, Sutton MA, McNeill SR (2007) Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation. Exp Mech 47(4):561–579

    Article  Google Scholar 

  83. Tiwari V, Sutton MA, McNeill SR, Xu S, Deng X, Fourney WL, Bretall D (2009) Application of 3D image correlation for full-field transient plate deformation measurements during blast loading. Int J Impact Eng 36(6):862–874

    Article  Google Scholar 

  84. Triggs B, McLauchlan PF, Hartley RI, Fitzgibbon AW (1999) Bundle adjustment – a modern synthesis. In: International workshop on vision algorithms. Springer, London, pp 298–372

    Google Scholar 

  85. Valley MT, Shields RW, Reed JM (2004) TrackEye tracking algorithm characterization. In: Target-in-the-loop: atmospheric tracking, imaging, and compensation. International Society for Optics and Photonics, pp 179–189

    Google Scholar 

  86. Voormeeren SN, van der Valk PLC, Rixen DJ (2011) Generalized method for assembly and reduction of component models for dynamic substructuring. AIAA J 49(5):1010–1020

    Article  Google Scholar 

  87. Wang W, Mottershead JE, Siebert T, Pipino A (2012) Frequency response functions of shape features from full-field vibration measurements using digital image correlation. Mech Syst Signal Process 28:333–347

    Article  Google Scholar 

  88. Warren C, Niezrecki C, Avitabile P, Pingle P (2011) Comparison of FRF measurements and mode shapes determined using optically image based, laser, and accelerometer measurements. Mech Syst Signal Process 25:2191–2202. https://doi.org/10.1016/j.ymssp.2011.01.018

    Article  Google Scholar 

  89. Wicks A, Vold H (1986) The Hs frequency response function estimator. In Proceedings of the 4th international modal analysis conference

    Google Scholar 

  90. Zappa E, Mazzoleni P, Matinmanesh A (2014a) Uncertainty assessment of digital image correlation method in dynamic applications. Opt Lasers Eng 56:140–151. https://doi.org/10.1016/j.optlaseng.2013.12.016

    Article  Google Scholar 

  91. Zappa E, Matinmanesh A, Mazzoleni P (2014b) Evaluation and improvement of digital image correlation uncertainty in dynamic conditions. Opt Lasers Eng 59:82–92. https://doi.org/10.1016/j.optlaseng.2014.03.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Niezrecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Niezrecki, C., Reu, P.L., Baqersad, J., Rohe, D.P. (2022). DIC and Photogrammetry for Structural Dynamic Analysis and High-Speed Testing. In: Allemang, R., Avitabile, P. (eds) Handbook of Experimental Structural Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4547-0_3

Download citation

Publish with us

Policies and ethics