Skip to main content

Artificial Olfactory Systems

  • Reference work entry
  • First Online:
Handbook of Biochips

Abstract

An artificial olfactory system, referred to as an electronic nose, is developed to target the functionality of the human olfactory system. In order to obtain a performance comparable to its biological counterpart, researchers focus their efforts on two different paths. The first path leads to the fabrication of the sensor array in order to mimic the functionality of the olfactory sensory neurons in the biological olfactory system. The second path concentrates on the development of odor identification algorithms to hopefully achieve a similar classification performance to that of the human brain. This chapter presents a review of the sensor technologies and the odor classification algorithms used in electronic nose technology. A case study of microelectronic nose system characterization, containing an in-house fabricated gas sensor array, is also presented by acquiring signatures of three gases in a laboratory and comparing the performance of the gas identification algorithms on this experimentally obtained data set.

The authors would like to thank the Qatar National Priority Research Program (QNPRP) for their support in this work under grant reference 5-080-2-028. Its contents are solely the responsibility of the authors and do not necessarily represent the views of the Qatar National Research Fund or Qatar University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alpaydin E (2010) Introduction to machine learning. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Bermak A, Belhouari SB (2006) Bayesian learning using gaussian process for gas identification. IEEE Trans Instrum Meas 55(3):787–792

    Article  Google Scholar 

  • Bhattacharyya N, Bandyopadhyay R, Bhuyan M, Tudu B, Ghosh D, Jana A (2008) Electronic nose for black tea classification and correlation of measurements with tea taster marks. IEEE Trans Instrum Meas 57(7):1313–1321

    Article  Google Scholar 

  • Bin G, Amine B, Philip CHC, Gui ZY (2007) An integrated surface micromachined convex microhotplate structure for tin oxide gas sensor array. IEEE Sensors J 7(12):1720–1726

    Article  Google Scholar 

  • Brahim-Belhouari S, Bermak A (2005) Gas identification using density models. Pattern Recogn Lett 26(6):699–706

    Article  Google Scholar 

  • Chen HT, Ng KT, Bermak A, Law MK, Martinez D (2011) Spike latency coding in a biologically inspired micro-electronic nose. IEEE Trans Biomed Circ Syst 5(2):160–168

    Article  Google Scholar 

  • Distante C, Ancona N, Siciliano P (2003) Support vector machines for olfactory signals recognition. Sens Actuators B Chem 88(1):30–39

    Article  Google Scholar 

  • Gang P, Ulrike T, Orna A, Meggie H, Nisrean S, Yoav YB, Salem B, Roxolyana AB, Abraham K, Hossam H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:669–673

    Article  Google Scholar 

  • Gutierrez R, Nagle HT (1999) A method for evaluating data-preprocessing techniques for odor classification with an array of gas sensors. IEEE Trans Syst Man Cybern B Cybern 29(5):626–632

    Article  Google Scholar 

  • Hassan M, Belhaouari SB, Bermak A (2015) Probabilistic rank score coding: a robust rank-order based classifier for electronic nose applications. IEEE Sensors J 15(7):3934–3946

    Article  Google Scholar 

  • Jeong MB, Mark Z, Myung HK, Kimberly LT, Alec W, Martin M (2010) Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. ACS Nano 4(6):3117–3122

    Article  Google Scholar 

  • Malnic B, Junzo H, Takaaki S, Linda BB (1996) Combinatorial receptor codes for odors. Cell 96(5):713–723

    Article  Google Scholar 

  • McEntegart CM, Penrose WR, Strathmann S, Stetter JR (2000) Detection and discrimination of coliform bacteria with gas sensor arrays. Sens Actuators B Chem 70(1–3):170–176

    Article  Google Scholar 

  • Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Po CC, Fumiaki NI, Hsiao KC, Koungmin R, Chongwu Z (2009) A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas. Nanotechnology 20(12):125503

    Article  Google Scholar 

  • Theodoridis S, Koutroumbas K (2008) Pattern recognition. Academic, Boston

    MATH  Google Scholar 

  • Turner Anthony PF, Magan N (2004) Electronic noses and disease diagnostics. Nat Rev Microbiol 2(2):161–166

    Article  Google Scholar 

  • Ulrike T, Ilana S, Radu I, Maria N, Noa A, Dorina R, Yael T, Faris A, Abraham M, Judith AP, Hossam H (2013) Detection of alzheimer’s and parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 8(1):43–56

    Article  Google Scholar 

  • VanRullen R, Guyonneau R, Thorpe S (2005) Spike times make sense. Trends Neurosci 28(1):1–4

    Article  Google Scholar 

  • Victor VS, Bradly KB, Kelly W, Serghei D, Andrei K (2006) Toward the nanoscopic “electronic nose”: hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. Nano Lett 6(8):1584–1588

    Article  Google Scholar 

  • Victor VS, Joachim G, Thomas S, Evghenii S, Andrei K (2007) A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett 7(10):3182–32188

    Article  Google Scholar 

  • Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9(7):5099–5148

    Article  Google Scholar 

  • Yamani J, Boussaid F, Bermak A, Martinez D (2012) Glomerular latency coding in artificial olfaction. Front Neuroeng 4(18):1–9

    Google Scholar 

  • Zhiyong F, Dawei W, Pai CC, Wei YT, Jia GL (2004) ZnO nanowire field-effect transistor and oxygen sensing property. Appl Phys Lett 85(24):5923–5925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Bermak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bermak, A., Hassan, M., Pan, X. (2022). Artificial Olfactory Systems. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3447-4_8

Download citation

Publish with us

Policies and ethics