Skip to main content

Optogenetic Implants

  • Reference work entry
  • First Online:
Handbook of Biochips
  • 2585 Accesses

Abstract

Using optogenetics for neuromodulation demonstrates a high potential, and it may become a useful tool to analyze complicated neural circuits and provide an effective gene therapy for chronic brain illnesses. One of the key challenges is to develop a miniaturized, intelligent, integrated, multi-site/multilayer, multimodal optogenetic implant. This chapter first introduces the optogenetics and its typical biomedical applications. Then this chapter gives an overview of the recent advance in the technology developments in optogenetic implants. Both discrete optogenetic implants and integrated optogenetic implants are described. Particularly, a microchip-based integrated approach (HUBIN optrode) demonstrated a possibility toward the development of new-generation intelligent, integrated, miniaturized, multimodal optogenetic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bi A, Cui J, Ma Y-P, Olshevskaya E, Pu M, Dizhoor AM et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33

    Article  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  Google Scholar 

  • Cao H, Gu L, Mohanty SK, Chiao JC (2013) An integrated μLED Optrode for optogenetic stimulation and electrical recording. IEEE Trans Biomed Eng 60:225–229

    Article  Google Scholar 

  • Fan B, Li W (2015) Miniaturized optogenetic neural implants: a review. Lab Chip 15:3838–3855

    Article  Google Scholar 

  • Fan B, Kwon KY, Weber AJ, Li W (2014) An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation. EMBC 2014, Chicago, IL, pp 450–453

    Google Scholar 

  • Fan B, Kwon K-Y, Rechenberg R, Becker MF, Weber AJ, Li W (2016) A hybrid neural interface optrode with a polycrystalline diamond heat spreader for optogenetics. Technology 4:15–22

    Google Scholar 

  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354

    Article  Google Scholar 

  • Kim T-I, McCall JG, Jung YH, Huang X, Siuda ER, Li Y, Song J, Song YM, Pao HA, Kim R-H et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340:211–216

    Article  Google Scholar 

  • Kravitz AV, Kreitzer AC (2011) Optogenetic manipulation of neural circuitry in vivo. Curr Opin Neurobiol 21:433–439

    Article  Google Scholar 

  • Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4:1376

    Article  Google Scholar 

  • LeChasseur Y, Dufour S, Lavertu G, Bories C, Deschenes M, Vallee R, De Koninck Y (2011) A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat Methods 8:319–325

    Article  Google Scholar 

  • Luan S, Williams I, Nikolic K, Constandinou TG (2015) Neuromodulation: present and emerging methods. Front Neuroeng 7:27

    Google Scholar 

  • McAlinden N, Massoubre D, Richardson E, Gu E, Sakata S, Dawson MD, Mathieson K (2013) Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. Opt Lett 38:992–994

    Article  Google Scholar 

  • Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of Channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  Google Scholar 

  • Rubehn B, Wolff SBE, Tovote P, Schuettler M, Lüthi A, Stieglitz T (2011) Polymer-based shaft microelectrodes with optical and fluidic capabilities as a tool for optogenetics. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, pp 2969–2972

    Google Scholar 

  • Scharf R, Tsunematsu T, McAlinden N, Dawson MD, Sakata S, Mathieson K (2016) Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe. Sci Rep 6(28381)

    Google Scholar 

  • Schwaerzle M, Elmlinger P, Paul O, Ruther P (2014) Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing. EMBC 2014, Chicago, IL, 26–30, pp 5252–5255

    Google Scholar 

  • Schwaerzle M, Elmlinger P, Paul O, Ruther P (2015) Miniaturized 3×3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, pp 162–165

    Google Scholar 

  • Schwaerzle M, Paul O, Ruther P (2017) Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications. J Micromech Microeng 27:065004

    Article  Google Scholar 

  • Son Y, Lee HJ, Kim J, Lee CJ, Yoon ES, Kim TG, Cho IJ (2015) A new monolithically integrated multi-functional MEMS neural probe for optical stimulation and drug delivery. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, pp 158–161

    Google Scholar 

  • Stark E, Koos T, Buzsaki G (2012) Diode-probes for spatiotemporal optical control of multiple neurons in freely-moving animals. J Neurophysiol 108:349–363

    Article  Google Scholar 

  • Wang J, Fabien W, David AB, Jiayi Z, Ilker O, Rebecca DB, Arto VN, van Rick W, Ilka D, Karl D (2012) Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J Neural Eng 9:016001

    Article  Google Scholar 

  • Wu F, Stark E, Im M, Cho I-J, Yoon E-S, Buzsáki G, Wise KD, Yoon E (2013) An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J Neural Eng 10:056012

    Google Scholar 

  • Wu F, Stark E, Ku P-C, Wise KD, Buzsáki G, Yoon E (2015) Monolithically integrated μLED on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88:1136–1148

    Article  Google Scholar 

  • Zhang F, Wang L-P, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–639

    Article  Google Scholar 

  • Zhao H (2017) Recent progress of development of optogenetic implantable neural probes. Int J Mol Sci 18(8):1751

    Article  Google Scholar 

  • Zhao H, Sokolov D, Degenaar P (2014) An implantable optrode with Self-diagnostic function in 0.35μm CMOS for optical neural stimulation. In: 2014 IEEE biomedical circuits and systems conference (BioCAS), Lausanne, pp 244–247

    Google Scholar 

  • Zhao H et al (2015) A CMOS-based neural implantable optrode for optogenetic stimulation and electrical recording. In: 2015 IEEE biomedical circuits and systems conference (BioCAS), Atlanta, pp 1–4

    Google Scholar 

  • Zhao H, Soltan A, Maaskant P, Dong N, Sun X, Degenaar P (2018) A scalable optoelectronic neural probe architecture with self-diagnostic capability. IEEE Trans Circuits Syst Regul Pap 65(8):2431–2442

    Article  Google Scholar 

  • Zhou A, Santacruz SR, Johnson BC et al (2019) A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nat Biomed Eng 3:15–26

    Article  Google Scholar 

  • Zorzos AN, Scholvin J, Boyden ES, Fonstad CG (2012) Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt Lett 37:4841–4843

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhao, H. (2022). Optogenetic Implants. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3447-4_48

Download citation

Publish with us

Policies and ethics