Skip to main content

Bladder Control Implants

  • Reference work entry
  • First Online:
Handbook of Biochips
  • 2529 Accesses

Abstract

This chapter presents a system of bladder neuromodulation and a method for the control of the variable burst biphasic pulse of a bladder stimulator. The stimulator is used to pass current through the tissue and to generate useful action potentials. The binary-weighted digital-to-analog converter combined with a current mirror has been employed as a microstimulator because of its higher linearity without requiring the decoding of digital inputs. Two algorithms including burst pulse generation algorithm and slow reversal with interphase delay pulse generation algorithm are present. Given that the use of a biphasic pulse could prevent ion-charge accumulation in tissues, two pairs of switches controlled by different clock phases are implemented to provide the biphasic electrical stimulation pulses. The presented method has been verified on FPGA implementation to demonstrate the proposed algorithms which is helpful for the future implementation in the integrated circuits. In this study, the pulse frequency can be programmed between 1.49 and 47.66 Hz, the burst frequency can be controlled from 190.8 to 763 Hz, and the pulse width can be adjusted between 21 and 325 μs. These stimulation parameters are adapted by the clock divider and by the number of controlled bits in the digital circuits. In the future, the microstimulator with controlled algorithm can be integrated with power interface and sensing channel as an implantable device for animal study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bruns TM, Bhadra B, Gustafson KJ (2008) Variable patterned pudendal nerve stimuli improves reflex bladder activation. IEEE Trans Neural Syst Rehabil Eng 16(2):140–148

    Article  Google Scholar 

  • Bugbee MB, Donaldson NN, Lickel A, Rijkhoff NJM, Taylor J (2001) An implant for chronic selective stimulation of nerves. Med Eng Phys 23:29–36

    Article  Google Scholar 

  • Donfack CM, Sawan M, Savaria Y (2000) Implantable measurement technique dedicated to the monitoring of electrode-nerve contact in bladder stimulators. Med Biol Eng Comput 38(4):465–468

    Article  Google Scholar 

  • Lee SY, Su MYC et al (2011) A programmable implantable microstimulator SoC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. IEEE Trans Biomed Circ Syst 5(6):511–522

    Article  Google Scholar 

  • Liu A, Demosthenous A, Rahal M, Donaldson N (2007) Recent advances in the design of implantable stimulator output stages. In: 18th European Conference on Circuit Theory and Design (ECCTD), pp 204–207

    Google Scholar 

  • Liu X, Demosthenous A, Donaldson N (2008) An integrated implantable stimulator that is fail-safe without off-chip blocking-capacitors. IEEE Trans Biomed Circ Syst 2(3):231–244

    Article  Google Scholar 

  • Masdar A, Ibrahim BSKK, Abdul Jamil MM (2012) Development of low-cost current controlled stimulator for paraplegics. Int J Integr Eng 4(3):40–47

    Google Scholar 

  • Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141(2):171–198

    Article  Google Scholar 

  • Rodriguez FJ, Ceballos D, Schuttler M, Valero A, Valderrama E, Stieglitz T, Navarro X (2000) Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods 98(2):105–118

    Article  Google Scholar 

  • Sit JJ, Sarpeshkar R (2007) A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation. IEEE Trans Biomed Circ Syst 1(3):172–183

    Article  Google Scholar 

  • Sivaprakasam M, Liu W, Humayun MS, Weiland JD (2005) A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device. IEEE J Solid State Circ 40(3):763–771

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuenn-Yuh Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, SY., Huang, CY. (2022). Bladder Control Implants. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3447-4_34

Download citation

Publish with us

Policies and ethics