Skip to main content

Sensors for Vital Signs: Micro-Ball Wireless Endoscopic Capsules

  • Reference work entry
  • First Online:
Handbook of Biochips
  • 2591 Accesses

Abstract

The advent of wireless capsule endoscopy is a milestone in the development of medical endoscopic tools. This chapter reviews and analyzes the key design techniques applied in current endoscopic capsules. This chapter also proposes the design of a Micro-Ball wireless endoscopic capsule with a wide field of view, which can fulfill the examination of the human gastrointestinal tract with low miss rate. The main design techniques applied in the Micro-Ball include master-slave architecture with a four-level clock management, a low-complexity image compressor, and a high-efficiency wireless power receiver chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bang S, Park JY, Jeong S, Kim YH, Shim HB, Kim TS, Song SY (2009) First clinical trial of the “MiRo” capsule endoscope by using a novel transmission technology: electric-field propagation. Gastrointest Endosc 69(2):253–259

    Article  Google Scholar 

  • Cavallotti C, Piccigallo M, Susilo E, Valdastri P, Menciassi A, Dario P (2009) An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators A Phys 156(1):72–78

    Article  Google Scholar 

  • Chen X, Zhang X, Zhang L, Li X, Qi N, Jiang H, Wang Z (2009) A wireless capsule endoscope system with low-power controlling and processing ASIC. Biomed Circ Syst IEEE Trans 3(1):11–22

    Article  Google Scholar 

  • Ciuti G, Menciassi A, Dario P (2011) Capsule endoscopy: from current achievements to open challenges. Biomed Eng IEEE Rev 4:59–72

    Article  Google Scholar 

  • Dung LR, Wu YY (2010) A wireless narrowband imaging chip for capsule endoscope. Biomed Circ Syst IEEE Trans 4(6):462–468

    Article  Google Scholar 

  • Fischer D, Schreiber R, Levi D, Eliakim R (2004) Capsule endoscopy: the localization system. Gastrointest Endosc Clin N Am 14(1):25–31

    Article  Google Scholar 

  • Gao Y, Zheng Y, Diao S, Toh WD, Ang CW, Je M, Heng CH (2011) Low-power ultrawideband wireless telemetry transceiver for medical sensor applications. Biomed Eng IEEE Trans 58(3):768–772

    Article  Google Scholar 

  • Gono K, Yamazaki K, Doguchi N, Nonami T, Obi T, Yamaguchi M, Endo T (2003) Endoscopic observation of tissue by narrowband illumination. Opt Rev 10(4):211–215

    Article  Google Scholar 

  • Gonzalez-Guillaumin JL, Sadowski DC, Kaler KV, Mintchev MP (2007) Ingestible capsule for impedance and pH monitoring in the esophagus. Biomed Eng IEEE Trans 54(12):2231–2236

    Article  Google Scholar 

  • Gu Y, Xie X, Wang Z, Li G, Sun T, Qi N, Wang Z (2009) A new globularity capsule endoscopy system with multi-camera. In: Biomedical circuits and systems conference, BioCAS 2009, IEEE. Beijing, China, pp 289–292

    Google Scholar 

  • Gu Y, Li G, Xie X, Sun T, Liu S, Li X, Wang Z (2012) The design and implementation of a chipset for the endoscopic Micro-ball. In: Circuits and systems (ISCAS), 2012 I.E. international symposium on. IEEE, Seoul, Korea, pp 2633–2636

    Google Scholar 

  • Iddan G, Meron G, Glukhovsky A, Swain P (2000) Wireless capsule endoscopy. Nature 405:417

    Article  Google Scholar 

  • Jiang H, Li F, Chen X, Ning Y, Zhang X, Ma T, Wang Z (2010) A SoC with 3.9 mW 3 Mbps UHF transmitter and 240 μW MCU for capsule endoscope with bidirectional communication. In: Solid state circuits conference (A-SSCC), 2010 I.E. Asian. Beijing, China, pp 1–4

    Google Scholar 

  • Johannessen EA, Wang L, Cui L, Tang TB, Ahmadian M, Astaras A, Cooper JM (2004) Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. Biomed Eng IEEE Trans 51(3):525–535

    Article  Google Scholar 

  • Karargyris A, Bourbakis N (2010) Wireless capsule endoscopy and endoscopic imaging: a survey on various methodologies presented. Eng Med Biol Mag IEEE 29(1):72–83

    Article  Google Scholar 

  • Khan TH, Wahid KA (2011) Low power and low complexity compressor for video capsule endoscopy. Circ Syst Video Technol IEEE Trans 21(10):1534–1546

    Article  Google Scholar 

  • Kim K, Yun S, Lee S, Nam S, Yoon YJ, Cheon C (2012) A design of a high-speed and high-efficiency capsule endoscopy system. Biomed Eng IEEE Trans 59(4):1005–1011

    Article  Google Scholar 

  • Kong KC, Cha J, Jeon D, Cho DI (2005) A rotational micro biopsy device for the capsule endoscope. In: Intelligent robots and systems (IROS 2005). 2005 IEEE/RSJ international conference on, IEEE. Edmonton, Canada, pp 1839–1843

    Google Scholar 

  • Lenaerts B, Puers R (2007) An inductive power link for a wireless endoscope. Biosens Bioelectron 22(7):1390–1395

    Article  Google Scholar 

  • McCaffrey C, Chevalerias O, O’Mathuna C, Twomey K (2008) Swallowable-capsule technology. Pervasive Comput IEEE 7(1):23–29

    Article  Google Scholar 

  • Nathan M, Golodnitsky D, Yufit V, Strauss E, Ripenbein T, Shechtman I, Peled E (2005) Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS. Microelectromech Syst J 14(5):879–885

    Article  Google Scholar 

  • Richert H, Hilgenfeld B, Gornert P (2009) Magnetic sensor techniques for new intelligent endoscopic capsules. In: Proceedings of the 10th symposium magnetoresistive sensors and magnetic systems Watzlar, Germany

    Google Scholar 

  • Schoofs N, Devière J, Van Gossum A (2006) PillCam colon capsule endoscopy compared with colonoscopy for colorectal tumor diagnosis: a prospective pilot study. Endoscopy 38(10):971–977

    Article  Google Scholar 

  • Stathopoulos E, Schlageter V, Meyrat B, Ribaupierre Y, Kucera P (2005) Magnetic pill tracking: a novel non invasive tool for investigation of human digestive motility. Neurogastroenterol Motility 17(1):148–154

    Article  Google Scholar 

  • Sun T, Xie X, Li G, Gu Y, Li X, Wang Z (2011) An omnidirectional wireless power receiving IC with 93.6% efficiency CMOS rectifier and skipping booster for implantable bio-microsystems. In Proc. IEEE Asian Solid-State Circuit Conf. Nov. 2011. Jeju, Korea. pp.185–188

    Google Scholar 

  • Sun T, Xie X, Li G, Gu Y, Deng Y, Wang Z (2012) A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection. Biomed Eng IEEE Trans 59(11):3247–3254

    Article  Google Scholar 

  • Toh WD, Zhao B, Gao Y, Je M, Heng CH (2013) A low power image sensor controller and JPEG encoder IC for wireless capsule endoscopy. Int J Inf Electr Eng 3(1):32–34

    Google Scholar 

  • Vatteroni M, Covi D, Cavallotti C, Clementel L, Valdastri P, Menciassi A, Sartori A (2010) Smart optical CMOS sensor for endoluminal applications. Sensors and Actuators A Phys 162(2):297–303

    Article  Google Scholar 

  • Westerhof J, Weersma RK, Koornstra JJ (2009) Risk factors for incomplete small-bowel capsule endoscopy. Gastrointest Endosc 69(1):74–80

    Article  Google Scholar 

  • Wilding I, Hirst P, Connor A (2000) Development of a new engineering-based capsule for human drug absorption studies. Pharm Sci Technol Today 3(11):385–392

    Article  Google Scholar 

  • Xie X, Li G, Chen X, Li X, Wang Z (2006) A low-power digital IC design inside the wireless endoscopic capsule. Solid State Circ IEEE J 41(11):2390–2400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingke Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gu, Y., Xie, X., Li, G., Wang, Z. (2022). Sensors for Vital Signs: Micro-Ball Wireless Endoscopic Capsules. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3447-4_32

Download citation

Publish with us

Policies and ethics