Pediatric Dysraphism and Scoliosis: Evidence-Based Neuroimaging

  • Geetika Khanna
  • L. Santiago Medina
  • Diego Jaramillo
  • Esperanza Pacheco-Jacome
  • Martha Ballesteros
  • Tina Young Poussaint
  • Brian E. Grottkau
Reference work entry
Part of the Evidence-Based Imaging book series (Evidence-Based Imag.)


Spinal dysraphism or neural tube defects encompass a heterogeneous group of congenital spinal anomalies that result from the defective closure of the neural tube early in gestation with anomalous development of the caudal cell mass. A clinical neuroradiologic classification system has been developed by Tortori-Donati et al. to help organize the various forms of spinal dysraphism [1]. This system was devised based on a large series of patients seen and imaged at their spina bifida center over a 24-year period. This classification system divides spinal dysraphism into open or closed forms. An open spinal dysraphism (OSD) is present when the neural elements and/or their coverings are exposed through a bone defect and not covered by skin. OSD can then be subdivided into two major diagnoses: myelomeningocele and myelocele, based on the position of the neural placode with respect to the level of the skin surface. When there is elevation because of expansion of the subarachnoid space, the lesion is referred to as a myelomeningocele (MMC). A closed spinal dysraphism (CSD) is skin-covered but frequently suspected clinically due to a subcutaneous mass, hemangioma, or an overlying hairy patch.


Adolescent Idiopathic Scoliosis Idiopathic Scoliosis Neural Tube Defect Moderate Evidence Spinal Dysraphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tortori-Donati P, Cama A, Rosa ML, Andreussi L, Taccone A. Occult spinal dysraphism: neuroradiological study. Neuroradiology. 1990;31(6):512–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Newton P, Wenger D. Idiopathic scoliosis. In: Morrissy R, Weinstein S, editors. Pediatric orthopaedics. Philadelphia: PA Lippincott Williams & Wilkins; 2006. p. 693–762.Google Scholar
  3. 3.
    Oestreich AE, Young LW, Young PT. Scoliosis circa 2000: radiologic imaging perspective. I. Diagnosis and pretreatment evaluation. Skeletal Radiol. 1998;27(11):591–605.CrossRefGoogle Scholar
  4. 4.
    Shahcheraghi GH, Hobbi MH. Patterns and progression in congenital scoliosis. J Pediatr Orthop. 1999;19(6):766–75.PubMedGoogle Scholar
  5. 5.
    Jaramillo D, Poussaint TY, Grottkau BE. Scoliosis: evidence-based diagnostic evaluation. Neuroimaging Clin N Am. 2003;13(2):335–41, xii.Google Scholar
  6. 6.
    Frey L, Hauser WA. Epidemiology of neural tube defects. Epilepsia. 2003;44(Suppl 3):4–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Knight GJ, Palomaki GF. Maternal serum screening for fetal genetic disorders. New York: Churchill Livingstone; 1992.Google Scholar
  8. 8.
    Vintzileos AM, Ananth CV, Fisher AJ, Smulian JC, Day-Salvatore D, Beazoglou T, et al. Cost-benefit analysis of targeted ultrasonography for prenatal detection of spina bifida in patients with an elevated concentration of second-trimester maternal serum alpha-fetoprotein. Am J Obstet Gynecol. 1999;180(5):1227–33.PubMedCrossRefGoogle Scholar
  9. 9.
    Cameron M, Moran P. Prenatal screening and diagnosis of neural tube defects. Prenat Diagn. 2009;29(4):402–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Egelhoff JC, Prenger EC, Coley BD. Neuroradiology. Philadelphia: Lippincott-Raven Publishers; 1997.Google Scholar
  11. 11.
    Medina LS, Crone K, Kuntz KM. Newborns with suspected occult spinal dysraphism: a cost-effectiveness analysis of diagnostic strategies. Pediatrics. 2001;108(6):E101.PubMedCrossRefGoogle Scholar
  12. 12.
    Brophy JD, Sutton LN, Zimmerman RA, Bury E, Schut L. Magnetic resonance imaging of lipomyelomeningocele and tethered cord. Neurosurgery. 1989;25(3):336–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Moufarrij NA, Palmer JM, Hahn JF, Weinstein MA. Correlation between magnetic resonance imaging and surgical findings in the tethered spinal cord. Neurosurgery. 1989;25(3):341–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Raghavan N, Barkovich AJ, Edwards M, Norman D. MR imaging in the tethered spinal cord syndrome. AJR Am J Roentgenol. 1989;152(4):843–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoffman HJ, Hendrick EB, Humphreys RP. The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Childs Brain. 1976;2(3):145–55.PubMedGoogle Scholar
  16. 16.
    Tarcan T, Tinay I, Temiz Y, Alpay H, Ozek M, Simsek F. The value of sacral skin lesions in predicting occult spinal dysraphism in children with voiding dysfunction and normal neurological examination. J Pediatr Urol. 2012;8(1):55–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Kriss VM, Desai NS. Occult spinal dysraphism in neonates: assessment of high-risk cutaneous stigmata on sonography. AJR Am J Roentgenol. 1998;171(6):1687–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Riseborough EJ, Wynne-Davies R. A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am. 1973;55(5):974–82.PubMedGoogle Scholar
  19. 19.
    Miller NH. Cause and natural history of adolescent idiopathic scoliosis. Orthop Clin North Am. 1999;30(3):343–52, vii.Google Scholar
  20. 20.
    Campos MA, Weinstein SL. Pediatric scoliosis and kyphosis. Neurosurg Clin N Am. 2007;18(3):515–29.PubMedCrossRefGoogle Scholar
  21. 21.
    Al-Arjani AM, Al-Sebai MW, Al-Khawashki HM, Saadeddin MF. Epidemiological patterns of scoliosis in a spinal center in Saudi Arabia. Saudi Med J. 2000;21(6):554–7.PubMedGoogle Scholar
  22. 22.
    Ouyang L, Grosse SD, Armour BS, Waitzman NJ. Health care expenditures of children and adults with spina bifida in a privately insured U.S. population. Birth Defects Res A Clin Mol Teratol. 2007;79(7):552–8.Google Scholar
  23. 23.
    Yawn BP, Yawn RA. The estimated cost of school scoliosis screening. Spine (Phila Pa 1976). 2000;25(18):2387–91.Google Scholar
  24. 24.
    Daffner SD, Beimesch CF, Wang JC. Geographic and demographic variability of cost and surgical treatment of idiopathic scoliosis. Spine (Phila Pa). 1976;35(11):1165–9.Google Scholar
  25. 25.
    Habib ZA. Maternal serum alpha-feto-protein: its value in antenatal diagnosis of genetic disease and in obstetrical-gynaecological care. Acta Obstet Gynecol Scand Suppl. 1977;61:1–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang ZP, Li H, Hao LZ, Zhao ZT. The effectiveness of prenatal serum biomarker screening for neural tube defects in second trimester pregnant women: a meta-analysis. Prenat Diagn. 2009;29(10):960–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Bradley LA, Palomaki GE, McDowell GA. Technical standards and guidelines: prenatal screening for open neural tube defects. Genet Med. 2005;7(5):355–69.PubMedCrossRefGoogle Scholar
  28. 28.
    Nicolaides KH, Campbell S, Gabbe SG, Guidetti R. Ultrasound screening for spina bifida: cranial and cerebellar signs. Lancet. 1986;2(8498):72–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Platt LD, Feuchtbaum L, Filly R, Lustig L, Simon M, Cunningham GC. The California Maternal Serum alpha-Fetoprotein Screening Program: the role of ultrasonography in the detection of spina bifida. Am J Obstet Gynecol. 1992;166(5):1328–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Van den Hof MC, Nicolaides KH, Campbell J, Campbell S. Evaluation of the lemon and banana signs in one hundred thirty fetuses with open spina bifida. Am J Obstet Gynecol. 1990;162(2):322–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Taipale P, Ammala M, Salonen R, Hiilesmaa V. Learning curve in ultrasonographic screening for selected fetal structural anomalies in early pregnancy. Obstet Gynecol. 2003;101(2):273–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Grandjean H, Larroque D, Levi S. The performance of routine ultrasonographic screening of pregnancies in the Eurofetus Study. Am J Obstet Gynecol. 1999;181(2):446–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith NC, Hau C. A six year study of the antenatal detection of fetal abnormality in six Scottish health boards. Br J Obstet Gynaecol. 1999;106(3):206–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Lennon CA, Gray DL. Sensitivity and specificity of ultrasound for the detection of neural tube and ventral wall defects in a high-risk population. Obstet Gynecol. 1999;94(4):562–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Simon EM, Pollock AN. Prenatal and postnatal imaging of spinal dysraphism. Semin Roentgenol. 2004;39(2):182–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Blaas HG, Eik-Nes SH. Sonoembryology and early prenatal diagnosis of neural anomalies. Prenat Diagn. 2009;29(4):312–25.PubMedCrossRefGoogle Scholar
  37. 37.
    D’Addario V, Rossi AC, Pinto V, Pintucci A, Di Cagno L. Comparison of six sonographic signs in the prenatal diagnosis of spina bifida. J Perinat Med. 2008;36(4):330–4.PubMedGoogle Scholar
  38. 38.
    Watson WJ, Chescheir NC, Katz VL, Seeds JW. The role of ultrasound in evaluation of patients with elevated maternal serum alpha-fetoprotein: a review. Obstet Gynecol. 1991;78(1):123–8.PubMedGoogle Scholar
  39. 39.
    Bulas D. Fetal evaluation of spine dysraphism. Pediatr Radiol. 2010;40(6):1029–37.PubMedCrossRefGoogle Scholar
  40. 40.
    Goncalves LF, Lee W, Espinoza J, Romero R. Three- and 4-dimensional ultrasound in obstetric practice: does it help? J Ultrasound Med. 2005;24(12):1599–624.PubMedGoogle Scholar
  41. 41.
    Benacerraf BR, Benson CB, Abuhamad AZ, Copel JA, Abramowicz JS, Devore GR, et al. Three- and 4-dimensional ultrasound in obstetrics and gynecology: proceedings of the American Institute of Ultrasound in Medicine Consensus Conference. J Ultrasound Med. 2005;24(12):1587–97.PubMedGoogle Scholar
  42. 42.
    Glenn OA, Barkovich J. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: part 2. AJNR Am J Neuroradiol. 2006;27(9):1807–14.PubMedGoogle Scholar
  43. 43.
    Wolpert SM, Anderson M, Scott RM, Kwan ES, Runge VM. Chiari II malformation: MR imaging evaluation. AJR Am J Roentgenol. 1987;149(5):1033–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Gilbert JN, Jones KL, Rorke LB, Chernoff GF, James HE. Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery. 1986;18(5):559–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Aaronson OS, Hernanz-Schulman M, Bruner JP, Reed GW, Tulipan NB. Myelomeningocele: prenatal evaluation–comparison between transabdominal US and MR imaging. Radiology. 2003;227(3):839–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Adzick NS, Thom EA, Spong CY, Brock JW, 3rd, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Horton D, Barnes P, Pendleton BD, Pollay M. Spina bifida occulta: early clinical and radiographic diagnosis. J Okla State Med Assoc. 1989;82(1):15–9.PubMedGoogle Scholar
  48. 48.
    Volpe JJ. Neurology of the newborn. 4th ed. Philadelphia: W.B. Saunders; 2001.Google Scholar
  49. 49.
    Drolet BA, Chamlin SL, Garzon MC, Adams D, Baselga E, Haggstrom AN, et al. Prospective study of spinal anomalies in children with infantile hemangiomas of the lumbosacral skin. J Pediatr. 2010;157(5):789–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Rohrschneider WK, Forsting M, Darge K, Troger J. Diagnostic value of spinal US: comparative study with MR imaging in pediatric patients. Radiology. 1996;200(2):383–8.PubMedGoogle Scholar
  51. 51.
    Santiago Medina L, al-Orfali M, Zurakowski D, Poussaint TY, DiCanzio J, Barnes PD. Occult lumbosacral dysraphism in children and young adults: diagnostic performance of fast screening and conventional MR imaging. Radiology. 1999;211(3):767–71.Google Scholar
  52. 52.
    Morrissy RT, Goldsmith GS, Hall EC, Kehl D, Cowie GH. Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Joint Surg Am. 1990;72(3):320–7.Google Scholar
  53. 53.
    Carman DL, Browne RH, Birch JG. Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Joint Surg Am. 1990;72(3):328–33.Google Scholar
  54. 54.
    Shea KG, Stevens PM, Nelson M, Smith JT, Masters KS, Yandow S. A comparison of manual versus computer-assisted radiographic measurement. Intraobserver measurement variability for Cobb angles. Spine. 1998;23(5):551–5.Google Scholar
  55. 55.
    Pruijs JE, Hageman MA, Keessen W, van der Meer R, van Wieringen JC. Variation in Cobb angle measurements in scoliosis. Skeletal Radiol. 1994;23(7):517–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Mehta SS, Modi HN, Srinivasalu S, Chen T, Suh SW, Yang JH, et al. Interobserver and intraobserver reliability of Cobb angle measurement: endplate versus pedicle as bony landmarks for measurement: a statistical analysis. J Pediatr Orthop. 2009;29(7):749–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Risser JC. The Iliac apophysis; an invaluable sign in the management of scoliosis. Clin Orthop. 1958;11:111–9.PubMedGoogle Scholar
  58. 58.
    Risser JC. The classic: the iliac apophysis: an invaluable sign in the management of scoliosis. Clin Orthop Relat Res. 2009;468(3):643–53.PubMedGoogle Scholar
  59. 59.
    Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am. 1984;66(7):1061–71.PubMedGoogle Scholar
  60. 60.
    Ronckers CM, Land CE, Miller JS, Stovall M, Lonstein JE, Doody MM. Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res. 2010;174(1):83–90.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976). 2000;25(16):2052–63.Google Scholar
  62. 62.
    Levy AR, Goldberg MS, Mayo NE, Hanley JA, Poitras B. Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine. 1996;21(13):1540–7; discussion 8.Google Scholar
  63. 63.
    Levy AR, Goldberg MS, Hanley JA, Mayo NE, Poitras B. Projecting the lifetime risk of cancer from exposure to diagnostic ionizing radiation for adolescent idiopathic scoliosis. Health Phys. 1994;66(6):621–33.PubMedCrossRefGoogle Scholar
  64. 64.
    Geijer H, Verdonck B, Beckman KW, Andersson T, Persliden J. Digital radiography of scoliosis with a scanning method: radiation dose optimization. Eur Radiol. 2003;13(3):543–51.PubMedGoogle Scholar
  65. 65.
    Kluba T, Schafer J, Hahnfeldt T, Niemeyer T. Prospective randomized comparison of radiation exposure from full spine radiographs obtained in three different techniques. Eur Spine J. 2006;15(6):752–6.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Lewonowski K, King JD, Nelson MD. Routine use of magnetic resonance imaging in idiopathic scoliosis patients less than eleven years of age. Spine (Phila Pa 1976). 1992;17(Suppl 6):S109–16.Google Scholar
  67. 67.
    Gupta P, Lenke LG, Bridwell KH. Incidence of neural axis abnormalities in infantile and juvenile patients with spinal deformity. Is a magnetic resonance image screening necessary? Spine (Phila Pa 1976). 1998;23(2):206–10.Google Scholar
  68. 68.
    Evans SC, Edgar MA, Hall-Craggs MA, Powell MP, Taylor BA, Noordeen HH. MRI of ‘idiopathic’ juvenile scoliosis. A prospective study. J Bone Joint Surg Br. 1996;78(2):314–7.Google Scholar
  69. 69.
    Dobbs MB, Lenke LG, Szymanski DA, Morcuende JA, Weinstein SL, Bridwell KH, et al. Prevalence of neural axis abnormalities in patients with infantile idiopathic scoliosis. J Bone Joint Surg Am. 2002;84-A(12):2230–4.PubMedGoogle Scholar
  70. 70.
    Ramirez N, Johnston CE, Browne RH. The prevalence of back pain in children who have idiopathic scoliosis. J Bone Joint Surg Am. 1997;79(3):364–8.PubMedGoogle Scholar
  71. 71.
    Sato T, Hirano T, Ito T, Morita O, Kikuchi R, Endo N, et al. Back pain in adolescents with idiopathic scoliosis: epidemiological study for 43,630 pupils in Niigata City, Japan. Eur Spine J. 2011;20(2):274–9.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Davids JR, Chamberlin E, Blackhurst DW. Indications for magnetic resonance imaging in presumed adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2004;86-A(10):2187–95.PubMedGoogle Scholar
  73. 73.
    Fujimori T, Iwasaki M, Nagamoto Y, Sakaura H, Oshima K, Yoshikawa H. The utility of superficial abdominal reflex in the initial diagnosis of scoliosis: a retrospective review of clinical characteristics of scoliosis with syringomyelia. Scoliosis. 2010;5:17.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Morcuende JA, Dolan LA, Vazquez JD, Jirasirakul A, Weinstein SL. A prognostic model for the presence of neurogenic lesions in atypical idiopathic scoliosis. Spine. 2004;29(1):51–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Mejia EA, Hennrikus WL, Schwend RM, Emans JB. A prospective evaluation of idiopathic left thoracic scoliosis with magnetic resonance imaging. J Pediatr Orthop. 1996;16(3):354–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Schwend RM, Hennrikus W, Hall JE, Emans JB. Childhood scoliosis: clinical indications for magnetic resonance imaging. J Bone Joint Surg Am. 1995;77(1):46–53.PubMedGoogle Scholar
  77. 77.
    Barnes PD, Brody JD, Jaramillo D, Akbar JU, Emans JB. Atypical idiopathic scoliosis: MR imaging evaluation. Radiology. 1993;186(1):247–53.PubMedGoogle Scholar
  78. 78.
    Nakahara D, Yonezawa I, Kobanawa K, Sakoda J, Nojiri H, Kamano S, et al. Magnetic resonance imaging evaluation of patients with idiopathic scoliosis: a prospective study of four hundred seventy-two outpatients. Spine (Phila Pa 1976). 2011;36(7):E482-5.Google Scholar
  79. 79.
    Taylor LJ. Painful scoliosis: a need for further investigation. Br Med J (Clin Res Ed). 1986;292(6513):120–2.CrossRefGoogle Scholar
  80. 80.
    Eule JM, Erickson MA, O’Brien MF, Handler M. Chiari I malformation associated with syringomyelia and scoliosis: a twenty-year review of surgical and nonsurgical treatment in a pediatric population. Spine (Phila Pa 1976). 2002;27(13):1451–5.Google Scholar
  81. 81.
    Ozerdemoglu RA, Transfeldt EE, Denis F. Value of treating primary causes of syrinx in scoliosis associated with syringomyelia. Spine (Phila Pa 1976). 2003;28(8):806–14.Google Scholar
  82. 82.
    Barkovich AJ, Wippold FJ, Sherman JL, Citrin CM. Significance of cerebellar tonsillar position on MR. AJNR Am J Neuroradiol. 1986;7(5):795–9.PubMedGoogle Scholar
  83. 83.
    Mikulis DJ, Diaz O, Egglin TK, Sanchez R. Variance of the position of the cerebellar tonsils with age: preliminary report. Radiology. 1992;183(3):725–8.PubMedGoogle Scholar
  84. 84.
    Armonda RA, Citrin CM, Foley KT, Ellenbogen RG. Quantitative cine-mode magnetic resonance imaging of Chiari I malformations: an analysis of cerebrospinal fluid dynamics. Neurosurgery. 1994;35(2):214–23; discussion 23–4.Google Scholar
  85. 85.
    Cheng JC, Guo X, Sher AH, Chan YL, Metreweli C. Correlation between curve severity, somatosensory evoked potentials, and magnetic resonance imaging in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 1999;24(16):1679–84.Google Scholar
  86. 86.
    Hofkes SK, Iskandar BJ, Turski PA, Gentry LR, McCue JB, Haughton VM. Differentiation between symptomatic Chiari I malformation and asymptomatic tonsilar ectopia by using cerebrospinal fluid flow imaging: initial estimate of imaging accuracy. Radiology. 2007;245(2):532–40.PubMedCrossRefGoogle Scholar
  87. 87.
    Cousins J, Haughton V. Motion of the cerebellar tonsils in the foramen magnum during the cardiac cycle. AJNR Am J Neuroradiol. 2009;30(8):1587–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Brown E, Matthes JC, Bazan C, 3rd, Jinkins JR. Prevalence of incidental intraspinal lipoma of the lumbosacral spine as determined by MRI. Spine (Phila Pa 1976). 1994;19(7):833–6.Google Scholar
  89. 89.
    Uchino A, Mori T, Ohno M. Thickened fatty filum terminale: MR imaging. Neuroradiology. 1991;33(4):331–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Warder DE, Oakes WJ. Tethered cord syndrome and the conus in a normal position. Neurosurgery. 1993;33(3):374–8.PubMedCrossRefGoogle Scholar
  91. 91.
    DiPietro MA. The conus medullaris: normal US findings throughout childhood. Radiology. 1993;188(1):149–53.PubMedGoogle Scholar
  92. 92.
    Wilson DA, Prince JR. John Caffey award. MR imaging determination of the location of the normal conus medullaris throughout childhood. AJR Am J Roentgenol. 1989;152(5):1029–32.Google Scholar
  93. 93.
    Soleiman J, Demaerel P, Rocher S, Maes F, Marchal G. Magnetic resonance imaging study of the level of termination of the conus medullaris and the thecal sac: influence of age and gender. Spine (Phila Pa 1976). 2005;30(16):1875–80.Google Scholar
  94. 94.
    Haworth JC, Zachary RB. Congenital dermal sinuses in children; their relation to pilonidal sinuses. Lancet. 1955;269(6879):10–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Milhorat TH, Miller JI. Neonatology. 4th ed. Philadelphia: J.B. Lippincott; 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Geetika Khanna
    • 1
  • L. Santiago Medina
    • 6
    • 7
    • 8
  • Diego Jaramillo
    • 3
  • Esperanza Pacheco-Jacome
    • 2
  • Martha Ballesteros
    • 2
  • Tina Young Poussaint
    • 4
  • Brian E. Grottkau
    • 5
  1. 1.Mallinckrodt Institute of RadiologyWashington UniversitySt. LouisUSA
  2. 2.Department of RadiologyMiami Children’s HospitalMiamiUSA
  3. 3.Department of RadiologyThe Children’s Hospital of Philadelphia, affiliated with The Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Radiology, Harvard Medical SchoolChildren’s Hospital BostonBostonUSA
  5. 5.Department of Orthopaedic SurgeryMassachusetts General Hospital for Children, Harvard UniversityBostonUSA
  6. 6.Division of Neuroradiology-Neuroimaging, Department of RadiologyMiami Children’s HospitalMiamiUSA
  7. 7.Herbert Wertheim College of MedicineFlorida International UniversityMiamiUSA
  8. 8.Former Lecturer in RadiologyHarvard Medical SchoolBostonUSA

Personalised recommendations