Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Snow Features

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_625

Definition

Surface structures produced from atmospherically precipitated granular material during or after deposition, typically redistributed by aeolian processes.

Synonyms

Subtypes

Depositional structures (formed by free and forced deposition): friable freshly deposited snow cover (Kotlyakov 1966), snow-drift forms, snow ripple marks (cm scale in wavelength, mm scale in height), snow waves (m scale transverse dunes), snow barchans (Fig. 1) (“barchanoids”). Erosional structures: sastrugi (elongate grooves resulted from differential wind carving or hardened snow ridges (Bromwich et al. 1990)); irregular patterns, including cleavage patterns, pits, or corrasion hollows (Kotlyakov 1966, p. 59); and inverted forms (e.g., footprints) (Doumani 1967). Large-scale undulations: transverse  snow megadunes. On Earth, microtopography of snow surfaces is characterized by  ablation hollows during summer and  Sastruga during winter (Herzfeld et al. 2003).
This is a preview of subscription content, log in to check access

References

  1. Birnbaum G, Freitag J, Brauner R, König-Langlo G et al (2010) Strong-wind events and their influence on the formation of snow dunes: observations from Kohnen station, Dronning Maud Land. Antarct J Glaciol 56(199):891–902CrossRefGoogle Scholar
  2. Bromwich DH, Parish TR, and Zorman CA (1990) The confluence zone of the intense katabatic winds at Terra Nova Bay, Antarctica, as derived from airborne sastrugi surveys, and mesoscale numerical modeling. J. Geophys. Res 95:5495–5509Google Scholar
  3. Christensen PR (2003) Formation of recent Martian gullies through melting of extensive water-rich snow deposits. Nature 422(6927):45–48CrossRefGoogle Scholar
  4. Colbeck S, Akitaya E, Armostrong R, Gubler H, Lafeuille J, Lied K, McClung D, Morris E (2009) The International classification for seasonal snow on the ground, rev edn. The International Commission on Snow and Ice of the International Association of Scientific Hydrology and International Glaciological Society. Available online at http://www.cryosphericsciences.org/snowClassification.html
  5. Cornish V (1902) On snow waves and snow drifts in Canada. Geogr J 20(2):137–173CrossRefGoogle Scholar
  6. Doumani GA (1967) Surface structures in snow. In: International conference on low. Temperature science: I. Physics of snow and ice, proceedings, vol 1, Pt 2. Sapporo, pp 1119–1136Google Scholar
  7. Fahnestock MA, Scambos TA, Shuman CA, Arthern RJ, Winebrenner DP, Kwok R (2000) Snow megadune fields on the East Antarctic Plateau’s extreme atmosphere-ice interaction. Geophys Res Lett 27(22):3719–3722CrossRefGoogle Scholar
  8. Fassett CI, Head JW III (2006) Valleys on Hecates Tholus, Mars: origin by basal melting of summit snowpack. Planet Space Sci 54:370–378CrossRefGoogle Scholar
  9. Fastook JL, Head JW, Marchant DR, Forget F (2008) Tropical mountain glaciers on Mars: altitude-dependence of ice accumulation, accumulation conditions, formation times, glacier dynamics, and implications for planetary spin-axis/orbital history. Icarus 198:305–317CrossRefGoogle Scholar
  10. Forget F, Hourdin F, Talagrand O (1998) CO2 snow fall on Mars: simulation with a general circulation model. Icarus 131:302–316CrossRefGoogle Scholar
  11. Frezzotti M, Gandolfi S, La Marca F, Urbini S (2002) Snow dunes and glazed surfaces in Antarctica: new field and remote sensing data. Ann Glaciol 34:81–88CrossRefGoogle Scholar
  12. Hannes GP, Hannes SM (1984) Observations of snow dunes on Lake Erie. Ohioj Sci 84(1):51–54Google Scholar
  13. Hansen GB (1999) Control of the radiative behavior of the Martian polar caps by surface CO2 ice: evidence from Mars Global Surveyor measurements. J Geophys Res 104:16471–16486. doi:10.1029/1998JE000626CrossRefGoogle Scholar
  14. Hargitai HI (2013) Live monitoring of development of ice and snow features as planetary analogs on Lake Balaton. 44th Lunar Planet Sci Conf, abstract #2162, HoustonGoogle Scholar
  15. Hayne PO, Paige DA, Schofield JT, Kass DM, Kleinböhl A, Heavens NG, McCleese DJ (2012) Carbon dioxide snow clouds on Mars: south polar winter observations by the Mars Climate Sounder. J Geophys Res 117:E08014. doi:10.1029/2011JE004040Google Scholar
  16. Head JW, Neukum G, Jaumann R, Hiesinger H, Hauber E, Carr M, Masson P, Foing B, Hoffmann H, Kreslavsky M, Werner S, Milkovich S, Van Gasselt S (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434(7031):346–351CrossRefGoogle Scholar
  17. Herzfeld UC, Mayer H, Caine N, Losleben M, Erbrecht T (2003) Morphogenesis of typical winter and summer snow surface patterns in a continental alpine environment. Hydrol Process 17:619–649. doi:10.1002/hyp.1158CrossRefGoogle Scholar
  18. Howard AD (2003) Tongue ridges and rumpled crater floors in midsouthern-latitude Martian craters. Lunar Planet Sci Conf XXXIV, abstract #1065, HoustonGoogle Scholar
  19. Kite ES, Halevy I, Kahre MA, Wolff MJ, Manga M (2013) Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound. Icarus 223(1):181–210. http://dx.doi.org/10.1016/j.icarus.2012.11.034
  20. Kobayashi S (1980) Studies on interaction between wind and dry snow surface. Contrib Inst Low Temp Sci A29:1–64Google Scholar
  21. Kotlyakov VM (1966) The snow cover of the Antarctic and its role in the present-day glaciation of the continent. Israel Program for Scientific Translations, JerusalemGoogle Scholar
  22. Kuroda T, Medvedev AS, Kasaba Y, Hartogh P (2013) Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars. Geophys Res Lett 40. doi:10.1002/grl.50326Google Scholar
  23. Massom RA, Lytle VI, Worby AP, Allison I (1998) Winter snow cover variability on East Antarctic sea ice. J Geophys Res 103(C11):24837–24855CrossRefGoogle Scholar
  24. Massom RA et al. (2001) Snow on Antarctic sea ice. Rev. Geophys. 39(3):413–445. doi:10.1029/2000RG000085Google Scholar
  25. Morgan GA, Head JW, Marchant DR, Dickson JL, Lecy JS (2007) Gully formation on Mars: testing the snowpack hypothesis from analysis of analogs in the antarctic dry valleys. Lunar Planet Sci XXXVIII, abstract #1656, HoustonGoogle Scholar
  26. Náday M (1996) Hó- és homokformák összehasonlítása. Comparison of snow and sand landforms, in Hungarian, Eötvös Loránd University Library no 385, thesis, 61 pGoogle Scholar
  27. Petrich C (2009) Snow distribution on Arctic sea ice and melt pond formation. In: Snow & Sea Ice Informal Workshop University of Alaska Fairbanks AKGoogle Scholar
  28. Pojlák J (1907) Hóformák és keletkezésük. (Snow forms and their origin, in Hungarian) Földrajzi Közlemények XXXV:311–331Google Scholar
  29. Rodriguez JAP, Tanaka KL, Langevin Y, Bourke M, Kargel J, Chistensen P, Sasaki S (2007) Recent aeolian erosion and deposition in the north polar plateau of Mars. Mars 3:29–41 doi:10.1555/mars.2007.0003Google Scholar
  30. Smith DE, Zuber MT, Neumann GA (2001) Seasonal variations of snow depth on Mars. Science 294:2141–2146CrossRefGoogle Scholar
  31. Whalley WB, Azizi F (2003) Rock glaciers and protalus landforms: analogous forms and ice sources on Earth and Mars. J Geophys Res 104(E4):8032. doi:10.1029/2002JE001864CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA