Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Dune System

  • Marco Cardinale
  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_602


Aeolian or subaqueous sand deposits that comprise hills of sand, which are formed under atmospheric or aqueous flows.


A type of  sand deposit.


 Aeolian bedforms;  Aeolian sand systems;  Dune;  Dune field, dune system, erg (originally used in N. Africa), sand sea. For a detailed nomenclature survey, see Breed and Grow (1979).


Areal extent: Aeolian dunes are organized into contiguous areas (sand seas/ergs or dune fields) which are composed of individual or coalesced dunes or draas. Sand seas may be comprised of dune fields and areas devoid of dunes, also called sand sheets (Thomas 1989).

On Earth, the term sand sea/ erg is used for dune fields >100 km2 (Wilson 1973) or >125 km2 (Thomas 1989), or wind-transported sand deposits covering >20 % of the ground (Wilson 1973, p. 78).

Dune fields on Earth are those covering areas smaller than 100 km2 (Pye and Tsoar 1990).

Several workers use the Barlow ID method for dune field identification ( impact...

This is a preview of subscription content, log in to check access.


  1. Bourke MC, Edgett KS, Cantor BA (2008) Recent aeolian dune change on Mars. Geomorphology 94:247–255.CrossRefGoogle Scholar
  2. Bourke MC, Goudie AS (2009) Varieties of barchan form in the Namib Desert and on Mars. Aeolian Res 1:45–54CrossRefGoogle Scholar
  3. Bourke MC, Lancaster N, Fenton LK, Parteli EJR, Zimbelman JR, Radebaugh J (2010) Extraterrestrial dunes: an introduction to the special issue on planetary dune systems. Geomorphology 121:1–14CrossRefGoogle Scholar
  4. Breed CS, Grow T (1979) Morphology and distribution of dunes in sand seas observed by remote sensing. In: McKee ED (ed) A study of global sand seas. U.S. Geological Survey Professional Paper 1052, pp 253–302Google Scholar
  5. Bridges NT, Bourke MC, Geissler PE, Banks ME, Colon C, Diniega S, Golombek MP, Hansen CJ, Mattson S, McEwen AS, Mellon MT, Stantzos N, Thomson BJ (2012) Planet-wide sand motion on Mars. Geology 40(1):31–34. doi:10.1130/G32373.1CrossRefGoogle Scholar
  6. Bristow CS, Augustinus PC, Wallis IC, Jol HM, Rhodes EJ (2010a) Investigation of the age and migration of reversing dunes in Antarctica using GPR and OSL, with implications for GPR on Mars. Earth Planet Sci Lett 289:30–42CrossRefGoogle Scholar
  7. Bristow CS, Jol HM, Augustinus P, Wallis I (2010b) Slipfaceless ‘whaleback’ dunes in a polar desert, Victoria Valley, Antarctica: Insights from ground penetrating radar. Geomorphology 114:361–372CrossRefGoogle Scholar
  8. Byrne S, Murray BC (2002) North polar stratigraphy and the paleo-erg of Mars. J Geophys Res 107(E6):5044. doi:10.1029/2001JE001615CrossRefGoogle Scholar
  9. Cutts JA, Blasius KR, Briggs GA, Carr MH, Greeley R, Masursky H (1976) North polar region of Mars: imaging results from Viking 2. Science 194:1329–1337CrossRefGoogle Scholar
  10. Edgett KS, Williams RME, Malin MC, Cantor BA, Thomas PC (2003) Mars landscape evolution: influence of stratigraphy on geomorphology in the north polar region. Geomorphology 52(3–4):289–297CrossRefGoogle Scholar
  11. Fenton LK (2005) Potential sand sources for the dune fields in Noachis Terra, Mars. J Geophys Res (Planets) 110(E11004):1–27. doi:10.1029/2005JE002436Google Scholar
  12. Fenton LK, Hayward RK (2010) Southern high latitude dune fields on Mars: morphology, aeolian inactivity, and climate change. Geomorphology 121:98–121. http://dx.doi.org/10.1016/j.geomorph.2009.11.006
  13. Fujioka T, Chappell J, Fifield LK, Rhodes EJ (2009) Australian desert dune fields initiated with Pliocene-Pleistocene global climatic shift. Geology 37:51–54CrossRefGoogle Scholar
  14. Greeley R, Iversen JD (1985) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Greeley R, Arvidson RE, Maureen CE, Jeffrey AG, Plaut J, Saunders RS, Ellen GS, Stofan R, Thouvenot EJP, Wall SD, Weitz CM (1992a) Aeolian features on Venus: preliminary Magellan results. J Geophys Res 97(E8):13319–13345. doi:10.1029/92JE00980Google Scholar
  16. Greeley R, Lancaster N, Lee S, Thomas P (1992b) Martian aeolian processes, sediments, and features. In: Jakosky BM, Snyder CW, Matthews MS, Kieffer HH (eds) Mars. The University of Arizona Press, Tucson, pp 730–766Google Scholar
  17. Greeley R, Binder K, Thomas PE, Schubert G, Limonadi D, Weitz CM (1995) Wind-related features and processes on Venus: summary of Magellan results. Icarus 115:399–420CrossRefGoogle Scholar
  18. Greeley R, Saunders RS, Schubert G, Weitz CM (1997) Aeolian processes and features on Venus. In: Gougher SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, pp 547–589Google Scholar
  19. Hayward RK, Mullins KF, Fenton LK, Hare TM, Titus TN, Bourke M, Colprete A, Christensen PR (2007) Mars digital dune database. J Geophys Res (Planets) 112:E11007. doi:10.1029/2007JE002943Google Scholar
  20. Hayward RK, Fenton LK, Tanaka KL, Mullins KF, Titus TN, Bourke MC, Hare TM, Christensen PR (2008) Mars global digital dune database. Distribution in north polar region and comparison to equatorial region. Lunar Planet Sci Conf XXXIX, abstract #1208, HoustonGoogle Scholar
  21. Hayward RK, Fenton LK, Tanaka KL, Titus TN, Colaprete A, Christensen PR (2010) Mars global digital dune database; MC-1: U.S. Geological Survey Open-File report 2010–1170Google Scholar
  22. Hayward RK, Fenton LK, Titus TN (2013) Mars digital dune database. Global wind direction observations. 44th Lunar Planet Sci Conf, abstract #1075, HoustonGoogle Scholar
  23. Laity JE, Bridges NT (2009) Ventifacts on Earth and Mars: analytical, field, and laboratory studies supporting sand abrasion and windward feature development. Geomorphology 105:202–217CrossRefGoogle Scholar
  24. Lorenz RD, Wall S, Radebaugh J, Boubin G, Reffer E, Janssen M, Stofan E, Lopes R, Kirk R, Elachi C, Lunine J, Mitchell K, Paganelli F, Soderblom L, Wood C, Wye L, Zebker H, Anderson Y, Ostro S, Allison M, Boehmer R, Callahan P, Encrenaz P, Ori GG, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson W, Kelleher K, Muhleman D, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Stiles B, Vetrella S, Flamini E, West R (2006) The sand seas of titan: cassini RADAR observations of longitudinal dunes. Science 31(5774):724–727. doi:10.1126/science.1123257CrossRefGoogle Scholar
  25. Lorenz, RD, and Radebaugh J (2009) Global pattern of Titan’s dunes: Radar survey from the Cassini prime mission. Geophys Res Lett 36. doi:10.1029/2008/GL036850Google Scholar
  26. Malin MC, Edgett K (2000) Frosting and defrosting of Martian polar dunes. Lunar Planet Sci Conf XXXI, abstract #1056, HoustonGoogle Scholar
  27. Pye K, Tsoar H (1990) Aeolian sand and sand dunes. Unwin Hyman, London, 396 ppCrossRefGoogle Scholar
  28. Silvestro S, Di Achille G, Ori GG (2010) Dune morphology sand transport pathways and possible source areas in east thaumasia region (Mars). Geomorphology 121(1–2):84–97CrossRefGoogle Scholar
  29. Tanaka KL, Hayward RK (2008) Mars’ north circum-polar dunes: distribution, sources and migration history. In: Planetary dunes workshop: a record of climate change, abstract #7012Google Scholar
  30. Thomas PC (1982) Present wind activity on Mars: relation to large latitudinally zoned sediment deposits. J Geophys Res 87(999–10):008Google Scholar
  31. Thomas P (1984) Martian intracrater splotches: occurrence, morphology and colors. Icarus 57:205–227CrossRefGoogle Scholar
  32. Thomas DSG (1989) Aeolian sand deposits. In: Thomas DSG (ed) Arid zone geomorphology. Belhaven Press, London, pp 232–261Google Scholar
  33. Tirsch D (2008) Dark Dunes on Mars. Dissertation. Freien Universität, Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000008848
  34. Tirsch D, Jaumann R, Pacifici A, Poulet F (2011) Dark aeolian sediments in Martian craters: composition and sources. J Geophys Res 116:E03002. doi:10.1029/2009JE003562Google Scholar
  35. Wilson IG (1973) Ergs. Sed Geol 10(2):77–106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratorio di Telerilevamento e Planetologia, Dipartimento di Scienze Psicologiche, Umanistiche e del TerritorioUniversità degli Studi G. D’AnnunzioChietiItaly
  2. 2.NASA Ames Research Center/NPPMoffett FieldUSA