Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Deltas, Rías, and Estuaries

  • Federico Vilas
  • Ana M. Bernabeu
  • Belén Rubio
  • Daniel Rey
  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_601



This entry is about the terrestrial analogs of potential extraterrestrial features.


On Earth, the area of contact between the sea and the land is composed of a complex variety of sedimentary environments distributed along of the shoreline. They have common features that allow the collective study of their bathymetry, geomorphology, the origin and nature of the energy associated with transportation of sediments, sedimentation rate and direction of transport, etc. In turn, they represent some of the fastest and most significant spatial changes in sedimentation conditions that can be observed on the surface of the Earth (Fig. 1).
This is a preview of subscription content, log in to check access.


  1. Burr DM, Emery JP, Lorenz RD, Collins GC, Carling PA (2006) Sediment transport by liquid surficial flow: application to Titan. Icarus 181:235–242CrossRefGoogle Scholar
  2. Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sediment Petrol 62:1130–1146CrossRefGoogle Scholar
  3. Durán R (2005) Estratigrafía sísmica desde el Último Máximo Glacial en la Ría de Pontevedra (NO España). Thesis Doctoral. Universidad de VigoGoogle Scholar
  4. Fleming BW (2000) A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont Shelf Res 20:1125–1137CrossRefGoogle Scholar
  5. Ghafoor NA-L, Zarnecki JC, Challenor P, Srokosz MA (2000) Wind-driven surface waves on Titan. J Geophys Res 105(E5):12077–12091CrossRefGoogle Scholar
  6. Kraal ER, Asphaug EI, Lorenz RD (2003) Wave energy on Mars and Earth: considering lacustrine erosion. Lunar Planet Sci Conf XXXIV, abstract #1725, HoustonGoogle Scholar
  7. MacCready P (1999) Estuarine adjustment to changes in river flow and tidal mixing. J Phys Oceanogr 29:708–726CrossRefGoogle Scholar
  8. Nichol SL (1991) Zonation and sedimentology of estuarine facies in an incised valley, wave-dominated, microtidal setting, New South Wales, Australia. In: Smith DG et al (eds) Clastic tidal sedimentology. Canadian Society of Petroleum Geologists, Calgary, pp 41–57Google Scholar
  9. Ori GG, Marinangeli L, Baliva A, Bressan M, Strom RG (1998) Fluid dynamics of liquids on Titans surface. Planet Space Sci 46(9–10):1417–1421CrossRefGoogle Scholar
  10. Pejrup M (1988) The triangular diagram used for classification of estuarine sediments: a new approach. In: De Boer PL, Van Gelder A, Nio SD (eds) Tide-influenced sedimentary environments and facies. D. Reidel, Dordrecht, pp 289–300CrossRefGoogle Scholar
  11. Rey D, Mohamed KJ, Bernabeu A, Rubio B, Vilas F (2005) Early diagenesis of magnetic minerals in marine transitional environments: geochemical signatures of hydrodynamic forcing. Mar Geol 215:215–236CrossRefGoogle Scholar
  12. Rodriguez Lopez JP, Arche A (2010) Deltas. In: Arche A (ed) Sedimentología. Del proceso físico a la cuenca sedimentaria. Consejo Superior de Investigaciones Científicas (CSIC), Madrid, pp 561–618Google Scholar
  13. Roy PS, Thom BG, Wright LD (1980) Holocene sequences on an embayed high-energy coast: an evolutionary model. Sediment Geol 26:1–19CrossRefGoogle Scholar
  14. Sagan C, Dermott SF (1982) The tide in the seas of Titan. Nature 300:731–733CrossRefGoogle Scholar
  15. Schneider T, Graves SDB, Schaller EL, Brown ME (2012) Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature 481:58–61. doi:10.1038/nature10666CrossRefGoogle Scholar
  16. Tokano T (2010) Simulation of tides in hydrocarbon lakes on Saturn’s moon Titan. Ocean Dyn 60:803–817. doi:10.1007/s10236-010-0285-3CrossRefGoogle Scholar
  17. Turtle EP, Perry JE, Hayes AG, Lorenz RD, Barnes JW, McEwen AS, West RA, Del Genio AD, Barbara JM, Lunine JI, Schaller EL, Ray TL, Lopes RMC, Stofan ER (2011) Rapid and extensive surface changes near Titan’s equator: evidence of April showers. Science 331:1414–1417CrossRefGoogle Scholar
  18. Varela RA, Rosón G, Herrera JL, Torres-Lopez S, Fernández-Romero A (2005) A general view of the hydrographic and dynamical patterns of the Rias Baixas adjacent sea area. J Mar Syst 54:97–113CrossRefGoogle Scholar
  19. Vilas F (2002) Rías and tidal-sea estuaries, in Coastal Zone and Estuaries: Estuarine Systems, In: Encyclopedia of life support systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Paris, France. http://www.eolss.net
  20. Vilas F, Bernabeu AM, Méndez G (2005) Sediment distribution pattern in the Rias Baixas (NW Spain): main facies and hydrodynamic dependence. J Mar Syst 54:261–276CrossRefGoogle Scholar
  21. Vilas F, Bernabeu AM, Rubio B, Rey D (2010) Estuarios, Rías y Llanuras intermareales. In: Arche A (ed) Sedimentología. Del proceso físico a la cuenca sedimentaria. Consejo Superior de Investigaciones Científicas (CSIC), Madrid, pp 619–673Google Scholar
  22. Wall S, Hayes A, Bristow C, Lorenz R, Stofan E, Lunine, J et al (2010) The Earthlike morphology of Titan’s Ontario Lacus. 41st Lunar Planet Sci Conf, abstract #1466, HoustonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Federico Vilas
    • 1
  • Ana M. Bernabeu
    • 1
  • Belén Rubio
    • 1
  • Daniel Rey
    • 1
  • Henrik Hargitai
    • 2
  1. 1.Department of Marine GeosciencesUniversity of VigoVigoSpain
  2. 2.NASA Ames Research Center/NPPMoffett FieldUSA