Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Spatter Cone

  • Emőke Fodor
  • Károly Németh
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_589


A low (few meters to tens of meters high), steep-sided (up to subvertical angles) lava spatter edifice around a fissure or focused vent typically emitting mafic magmas fed directly from deep magmatic sources through mild explosive eruptions.


 Agglutinate cone; Volcanello (rare)


Steep-sided cone of agglutinated spatter built up on along a fissure or vent forming lava fountains (Wolff and Sumner 2000). Lava spatter cones are commonly associated with fissures forming rows of lava spatter cones as documented from many terrestrial locations. Lava spatter cones can form stand-alone volcanic landforms or row of cones especially in association with extensive lava fields.


They are small features (Wolff and Sumner 2000) and reach 3–10 m during the first day of eruption (Wood 1980b). On Earth, on average, their basal diameter is 80 m, crater to cone diameter relation is 0.36, cone height to basal diameter ratio is 0.22, volume is 0.06 × 10 6 m 3, and...
This is a preview of subscription content, log in to check access.


  1. Bertotto GW, Bjerg EA, Cingolani CA (2006) Hawaiian and Strombolian style monogenetic volcanism in the extra-Andean domain of central-west Argentina. J Volcanol Geotherm Res 158(3–4):430–444CrossRefGoogle Scholar
  2. Brož P, Hauber E (2012) A unique volcanic field in Tharsis, Mars: pyroclastic cones as evidence for explosive eruptions. Icarus 218(1):88–99CrossRefGoogle Scholar
  3. Carveni P, Mele G, Benfatto S, Imposa S, Puntillo MS (2011) Lava trees and tree molds (“cannon stones”) of Mt. Etna. Bull Volcanol 73(6):633–638CrossRefGoogle Scholar
  4. Cattermole P (1986) Linear volcanic features at Alba Patera, Mars – PRobable spatter ridges. J Geophys Res 91(B13):E159–E165. doi:10.1029/JB091iB13p0E159CrossRefGoogle Scholar
  5. Connor CB (1990) Cinder cone clustering in the TransMexican volcanic belt: implications for structural and petrologic models. J Geophys Res 95(B12):19395–319405CrossRefGoogle Scholar
  6. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 331–343Google Scholar
  7. Gregg TKP, Williams SN (1996) Explosive mafic volcanoes on Mars and Earth: deep magma sources and rapid rise rate. Icarus 122(2):397–405CrossRefGoogle Scholar
  8. Hauber E, Bleacher J, Gwinner K, Williams D, Greeley R (2009) The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. J Volcanol Geotherm Res 185:69–95CrossRefGoogle Scholar
  9. Head JW, Wilson L (1989) Basaltic pyroclastic eruptions: influence of gas release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geotherm Res 37:261–271CrossRefGoogle Scholar
  10. Head JW, Wilson L (2007) Heat transfer in volcano–ice interactions on Mars: synthesis of environments and implications for processes and landforms. Ann Glaciol 45:1–13CrossRefGoogle Scholar
  11. Head JW, Shean DE, Wilson L (2005) Post-glacial dike emplacement event at Arsia Mons, Mars: eruptive spatter cones, tephra cones and flows along a dike-related fissure. Microsymposium 42: Topics in Comparative Planetology [10-12 October, 2005, Moscow, Russia], Brown University, Vernadsky Institute, Paper # m42_22.Google Scholar
  12. Heiken GH, McKay DS, Brown RW (1974) Lunar deposits of possible pyroclastic origin. Geochim Cosmochim Acta 38:1703–1718CrossRefGoogle Scholar
  13. Holm RF (2001) Cenozoic paleogeography of the central Mogollon Rim-southern Colorado Plateau region, Arizona, revealed by Tertiary gravel deposits, Oligocene to Pleistocene lava flows, and incised streams. Geol Soc Am Bull 113(11):1467–1485CrossRefGoogle Scholar
  14. Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol. doi:10.1007/s00445-007-0154-1Google Scholar
  15. Kereszturi G, Németh K (2012) Structural and morphometric irregularities of eroded Pliocene scoria cones at the Bakony-Balaton Highland Volcanic Field, Hungary. Geomorphology 136(1):45–58CrossRefGoogle Scholar
  16. Kereszturi G, Jordan G, Németh K, Dóniz-Páez JF (2012) Syn-eruptive morphometric variability of monogenetic scoria cones. Bull Volcanol 74(9): 2171–2185 doi:10.1007/s00445-012-0658-1Google Scholar
  17. Martin U, Németh K (2006) How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcan Ceboruco, (Mexico) and Al Haruj (Libya). J Volcanol Geotherm Res 155(1–2):104–118CrossRefGoogle Scholar
  18. Mattsson HB, Tripoli BA (2011) Depositional characteristics and volcanic landforms in the Lake Natron-Engaruka monogenetic field, northern Tanzania. J Volcanol Geotherm Res 203(1–2):23–34CrossRefGoogle Scholar
  19. Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Canon-Tapia E, Szakacs A (eds) What is a volcano? Geological Society of America, Boulder, pp 43–66CrossRefGoogle Scholar
  20. Németh K, Suwesi SK, Peregi Z, Gulácsi Z, Ujszászi J (2003) Plio/Pleistocene flood basalt related scoria and spatter cones, rootless lava flows, and pit craters, Al Haruj Al Abiyad, Libya. Geolines 15:98–103Google Scholar
  21. Németh K, Risso C, Nullo F, Kereszturi G (2011) The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina. Cent Eur J Geosci 3(2):102–118Google Scholar
  22. Parfitt EA, Wilson L (1995) Explosive volcanic-eruptions.9. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121(1):226–232CrossRefGoogle Scholar
  23. Parfitt EA, Wilson L, Neal CA (1995) Factors influencing the height of Hawaiian lava fountains: implications for the use of fountain height as an indicator of magma gas content. Bull Volcanol 57(6):440–450CrossRefGoogle Scholar
  24. Patrick MR, Orr T, Wilson D, Dow D, Freeman R (2011) Cyclic spattering, seismic tremor, and surface fluctuation within a perched lava channel, Kilauea Volcano. Bull Volcanol 73(6):639–653CrossRefGoogle Scholar
  25. Reid AM, Lofgren GE, Heiken GH, Brown RW, Moreland G (1973) Apollo 17 orange glass, Apollo 15 green glass and Hawaiian lava fountain glass. EOS Trans AGU 54:606–607Google Scholar
  26. Riggs NR, Duffield WA (2008) Record of complex scoria cone eruptive activity at Red Mountain, Arizona, USA, and implications for monogenetic mafic volcanoes. J Volcanol Geotherm Res 178(4):763–776CrossRefGoogle Scholar
  27. Self S, de Silva SL, Cortes JA (2008) Enigmatic clastogenic rhyolitic volcanism: the Corral de Coquena spatter ring, North Chile. J Volcanol Geotherm Res 177(4):812–821CrossRefGoogle Scholar
  28. Sumner JM (1998) Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima Volcano, eastern Japan. Bull Volcanol 60:195–212CrossRefGoogle Scholar
  29. Sumner JM, Blake S, Matela RJ, Wolff JA (2005) Spatter. J Volcanol Geotherm Res 142(1–2):49–65CrossRefGoogle Scholar
  30. Tanaka KL, Shoemaker EM, Ulrich GE, Wolfe EW (1986) Migration of volcanism in the San Francisco volcanic field, Arizona. Geol Soc Am Bull 97:129–141CrossRefGoogle Scholar
  31. Thordarson T, Self S (1993) The Laki (Skaftar-Fires) and Grimsvotn Eruptions in 1783–1785. Bull Volcanol 55(4):233–263CrossRefGoogle Scholar
  32. Ulrich G, Holm R, Wolfe E (1989) San Francisco volcanic field. In: Chapin C, Zidek J (eds) Field excursions to volcanic terranes in the western United States, vol I: Southern Rocky Mountain region. New Mexico Bureau of Mines and Mineral Resources (Socorro, NM), Memoir 46: pp 10–21Google Scholar
  33. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes – processes and problems. J Volcanol Geotherm Res 177(4):857–873CrossRefGoogle Scholar
  34. Valentine GA, Keating GN (2007) Eruptive styles and inferences about plumbing systems at Hidden Cone and Little Black Peak scoria cone volcanoes (Nevada, USA). Bull Volcanol 70(1):105–113CrossRefGoogle Scholar
  35. Wilson L, Head JW III (1981) Ascent and eruption of basaltic magma on the Earth and Moon. J Geophys Res 86(B4):2971–3001. doi:10.1029/JB086iB04p02971CrossRefGoogle Scholar
  36. Wilson L, Head JW (1994) Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys 32(3):221–263CrossRefGoogle Scholar
  37. Wilson L, Head JW (2001) Lava fountains from the 1999 Tvashtar Catena fissure eruption on Io: implications for dike emplacement mechanisms, eruption rates, and crustal structure. J Geophys Res Planet 106(E12):32997–33004CrossRefGoogle Scholar
  38. Wolff JA, Sumner JM (2000) Lava fountains and their products. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 321–329Google Scholar
  39. Wood C (1979) Monogenetic volcanoes of the terrestrial planets. Proc Lunar Planet Sci Conf 10:2815–2840, HoustonGoogle Scholar
  40. Wood C (1980a) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160CrossRefGoogle Scholar
  41. Wood CA (1980b) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physical Geography, Institute of Geography and Earth SciencesEötvös Loránd UniversityBudapestHungary
  2. 2.Institute of Agriculture and Environment, Volcanic Risk SolutionsMassey UniversityPalmerston NorthNew Zealand