Skip to main content

Wrinkle Ridge

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Asymmetrical ridge, typically composed of a broad linear rise and complex crenulations, which occur on a broad, low-relief arch (Watters 1988; Schultz 2000).

Synonyms

Descriptive: ridge, mare ridge, wrinkled mare ridge, mare ridge-highland scarp system (Lucchitta 1976). Interpretative: contractional lineament, Bergader (‘mountain vein’, german, Schröter 1791), pressure ridge

Description

Linear arc-shaped or sinuous topographic highs, preferentially found on lowland/plains areas (Golombek et al. 2001), occurring in quasi-regular or periodic spacing (Watters 1991) often in en echelon overlapping sets. They are often bifurcating or anastomosing (Lucchitta and Klockenbrink 1979), braid, and rejoin along strike (Plescia and Golombek 1986). They have asymmetrical profiles (one side having a steeper slope than the other).

Morphometry

Wrinkle ridges are 10s–100s of m high (highest on Mercury), up to 100s of km long, and few to 10s of km wide, displaying 10s of km spacing.

Mercury...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allemand P, Thomas PG (1995) Localization of Martian ridges by impact craters: mechanical and chronological implications. J Geophys Res 100:3251–3262

    Article  Google Scholar 

  • Beer W, Mädler JH (1837) Der Mond nach seinen kosmischen und individuellen Verhältnissen oder Allgemeine vergleichende Selenographie. Simon Schropp, Berlin

    Google Scholar 

  • Bilotti F, Suppe J (1999) The global distribution of wrinkle ridges on Venus. Icarus 139:137–157

    Article  Google Scholar 

  • Byrne PK, Klimczak C, Şengör AMC, Solomon SC, Watters TR, Hauck SA II (2014) Mercury’s global contraction much greater than earlier estimates. Nat Geosci 7:301–307. doi:10.1038/ngeo2097

    Google Scholar 

  • Chicarro AF, Schultz PH, Masson P (1985) Global and regional ridge patterns on Mars. Icarus 63:153–174

    Article  Google Scholar 

  • Elger TG (1895) The Moon – a full description and map of its principal physical features. George Philip & Son, London

    Google Scholar 

  • Golombek MP, Anderson FS, Zuber MT (2001) Martian wrinkle ridge topography: evidence from subsurface faults from MOLA. J Geophys Res 106(E10):23,811–23,821

    Article  Google Scholar 

  • Gregg TKP, de Silva S (2009) Tyrrhena Patera and Hesperia Planum, Mars: new insights (and old interpretations) from high-resolution imagery. 40th Lunar Planet Sci Conf, abstract #1700, Houston

    Google Scholar 

  • Head JW III, Kreslavsky MA, Pratt S (2002) Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period. J Geophys Res 107(E1):5004. doi:10.1029/2000JE001445

    Article  Google Scholar 

  • Kreslavsky MA, Basilevsky AT (1998) Morphometry of wrinkle ridges on Venus: comparison with other planets. J Geophys Res 103:11103–11112

    Article  Google Scholar 

  • Kuiper GP (1954) On the origin of the lunar surface features. Proc Natl Acad Sci 40:1096–1112

    Article  Google Scholar 

  • Lucchitta BK (1976) Mare ridges and related highland scarps – result of vertical tectonism. Lunar Planet Sci 7(3):2761–2782

    Google Scholar 

  • Lucchitta BK, Klockenbrink JL (1979) Ridges and scarps in the equatorial belt of Mars. Lunar Planet Sci Conf X:750–752

    Google Scholar 

  • Mangold N, Allemand P, Thomas PG (1998) Wrinkle ridges of Mars: structural analysis and evidence for shallow deformation controlled by ice-rich decollements. Planet Space Sci 46:345–356

    Article  Google Scholar 

  • Mangold N, Allemand P, Thomas PG, Vidal G (2000) Chronology of compressional deformation on Mars: evidence for a single and global origin. Planet Space Sci 48(12–14):1201–1211

    Article  Google Scholar 

  • Masursky H, Colton GW, El-Baz F (eds) (1978) Apollo over the Moon: a view from orbit. NASA scientific and technical information office SP-362. Washington, DC http://www.history.nasa.gov/SP-362/contents.htm

  • Mège D, Ernst RE (2001) Contractional effects of mantle plumes on Earth, Mars, and Venus. Geol Soc Am Special Paper 352:103–140

    Google Scholar 

  • Mueller K, Golombek M (2004) Compressional structures on Mars. Annu Rev Earth Planet Sci 32:435–464. doi:10.1146/annurev.earth.32.101802.120553

    Article  Google Scholar 

  • Nahm AL, Schultz RA (2011) Magnitude of global contraction on Mars from analysis of surface faults: implications for Martian thermal history. Icarus 211:389–400

    Article  Google Scholar 

  • Plescia JB, Golombek MP (1986) Origin of planetary wrinkle ridges based on the study of terrestrial analogs. Geol Soc Am Bull 97(11):1289–1299

    Article  Google Scholar 

  • Schröter JH (1791) Selenotopographische Fragmente. CG Fleckeinsen, Lilenthal

    Google Scholar 

  • Schultz RA (2000) Localization of bedding plane slip and backthrust faults above blind thrust faults: keys to wrinkle ridge structure. J Geophys Res 105:12,035–12,052

    Article  Google Scholar 

  • Strom RG (1972) Lunar mare ridges, rings and volcanic ring complexes. In: Runcorn SK, Urey HC (eds) The Moon, vol 47, Symposium International Astronomical Union. D Reidel, Dordrecht, pp 187–215

    Chapter  Google Scholar 

  • Thomson BJ, Head JW III (2001) Utopia Basin, Mars: characterization of topography and morphology and assessment of the origin and evolution of basin internal structure. J Geophys Res 106:23,209–23,230. doi:10.1029/2000JE001355

    Article  Google Scholar 

  • Walsh LS, Watters TR, Banks ME, Solomon SC (2013) Wrinkle ridges on Mercury and the Moon: a morphometric comparison of length–relief relations with implications for tectonic evolution. 44th Lunar Planet Sci Conf, abstract #2937, Houston

    Google Scholar 

  • Watters TR (1988) Wrinkle ridge assemblages on the terrestrial planets. J Geophys Res 93(B9):10236–10254. doi:10.1029/JB093iB09p10236

    Article  Google Scholar 

  • Watters TR (1991) Origin of periodically spaced wrinkle ridges on the Tharsis plateau of Mars. J Geophys Res 96(E1):15,599–15,616. doi:10.1029/91JE01402

    Article  Google Scholar 

  • Watters TR (1993) Compressional tectonism on Mars. J Geophys Res 98(E9):17,049–17,060. doi:10.1029/93JE01138

    Article  Google Scholar 

  • Watters T, Johnston C (2010) Lunar tectonics. In: Watters TR, Schultz RA (eds) Planetary tectonic. Cambridge University Press, New York, pp 121–182

    Google Scholar 

  • Watters TR, Nimmo F (2010) The tectonics of Mercury. In: Watters TR, Schultz RA (eds) Planetary tectonics. Cambridge University Press, New York, pp 15–80

    Google Scholar 

  • Watters TR, Solomon SC, Robinson MS, Head JW, André SL, Hauck SA II, Murchie SL (2009) The tectonics of Mercury: the view after MESSENGER’s first flyby. Earth Planet Sci Lett 285:283–296

    Article  Google Scholar 

  • Watters TR, Robinson MS, Beyer RA, Banks ME et al (2010) Evidence of recent thrust faulting on the moon revealed by the Lunar reconnaissance orbiter camera. Science 329(5994):936–940. doi:10.1126/science.1189590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarmo Korteniemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Korteniemi, J., Walsh, L.S., Hughes, S.S. (2015). Wrinkle Ridge. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_572

Download citation

Publish with us

Policies and ethics