Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Surficial Crust

  • Ákos Kereszturi
  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_556


Crusting and induration surface layer of originally fine-grained loose material.

Synonyms and Related Terms

 Desert crust; Hardpan (Thomas et al. 2005); Duricrust (Landis et al. 2004)


  1. (1)

    Duricrust is the cemented surface layer of loose dust on the top of regolith forming hardened, indurated layer (Mutch et al. 1977).

  2. (2)
    Desert crust is located directly on the top of solid bedrock and not on the regolith and might contain biogenic components (on Earth).
    1. (2.1)

      Microbiotic crust or cryptobiotic crust (Johansen 1993) is a type of desert crust influenced by biological activity (Lalley and Viles 2008; Pócs 2002) (on Earth).


Planetary Analog

Formation, Mars: Surficial crust observed at MER landing sites was proposed to have formed by either of the following processes:
  1. (1)

    Top down model: at night frost is deposited on the surface, which melts during the daytime and migrates downward assisted by capillary action, dissolving salts that are present. Water evaporates...

This is a preview of subscription content, log in to check access.


  1. Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. J Phycol 29:140–147CrossRefGoogle Scholar
  2. Kereszturi A, Bérczi S, Horváth A, Pócs T, Sik A, Szathmáry E (2012) The astrobiological potential of polar dunes on Mars. In: Hanslmeier A, Kempe S, Seckbach J (eds) Life on earth and other planetary bodies. Springer, New YorkGoogle Scholar
  3. Lalley JS, Viles HA (2008) Recovery of lichen-dominated soil crusts in a hyper-arid desert. Biodivers Conserv 17:1–20CrossRefGoogle Scholar
  4. Landis GA, Blaney D, Cabrol N, Clark BC, Farmer J, Grotzinger J, Greeley R, McLennan SM, Richter L, Yen A et al (2004) Transient liquid water as a mechanism for induration of soil crusts on Mars. Lunar Planet Sci Conf XXXV, abstract #2188, HoustonGoogle Scholar
  5. Mutch TA, Arvidson RE, Binder AB, Guiness EA, Morris EC (1977) The geology of the Viking Lander 2 site. J Geophys Res 82(28):4452–4467CrossRefGoogle Scholar
  6. Pócs T (2002) The cryptobiotic crust and its role in the terrestrial ecosystems. Inaugural lecture at the Hungarian Academy of Sciences. MHAS, BudapestGoogle Scholar
  7. Sullivan R, Banfield D, Bell JF III, Calvin W et al (2005) Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site. Nature 436:58–61. doi:10.1038/nature03641CrossRefGoogle Scholar
  8. Sullivan R, Arvidson R, Bell JF, Gellert R, Golombek M, Greeley R, Herkenhoff K, Johnson J, Thompson S, Whelley P, Wray J (2008) Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at “El Dorado” and surroundings at Gusev Crater. J Geophys Res: Planets 113(E6). doi:10.1029/2008JE003101Google Scholar
  9. Thomas M, Clarke JDA, Pain CF (2005) Weathering, erosion and landscape processes on Mars identified from recent rover imagery, and possible Earth analogues. Aust J Earth Sci 52(3):365–378. doi:10.1080/08120090500134597CrossRefGoogle Scholar
  10. Tirsch D (2008) Analyses on origin, morphology, and mineralogical composition of the dark material in martian craters. Thesis, Freien Universität, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Konkoly Thege Miklos Astronomical InstituteResearch Centre for Astronomy and Earth SciencesBudapestHungary
  2. 2.NASA Ames Research Center/NPPMoffett FieldUSA