Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Sublimation-Type Polygon

  • Timothy Haltigin
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_553


Sublimation polygons are a type of thermal contraction crack polygon that form in ice-rich substrates found in extremely arid and cold regions such as the Dry Valleys of Antarctica (Kowalewski et al. 2012). Unlike the more typical ice-wedge, sand-wedge, or composite-wedge polygons typically found in continuous permafrost environments, the bounding troughs deepen primarily through sublimation of underlying ground ice.


“Sublimation polygon” is not a universally accepted standard term in the periglacial literature. The formation and evolution of these features is subject to intense debate within the planetary geomorphic community. For the purposes of this entry, we consider a sublimation polygon as a subset of thermal contraction crack polygons (see encyclopedia entries for  Sand-Wedge Polygon and  Thermal Contraction Crack Polygons (Permafrost)).


Generally found as a network of enclosed polygonal shapes bounded by trough-like depressions up to 3 m deep,...

This is a preview of subscription content, log in to check access.


  1. Heet TL, Arvidson R, Cull SC, Mellon MT, Seelos KD (2009) Geomorphic and geologic settings of the Phoenix lander mission landing site. J Geophys Res 114. doi:10.1029/2009JE003416Google Scholar
  2. Kowalewski DE, Marchant DR, Levy JS, Head JW (2006) Quantifying low rates of summertime sublimation for buried glacier ice in Beacon Valley, Antarctica. Antarct Sci 18(3):421–428CrossRefGoogle Scholar
  3. Kowalewski DE, Marchant DE, Head JW III, Jackson DW (2012) A 2D model for characterising first-order variability in sublimation of buried Glacier Ice, Antarctica: assessing the influence of polygon troughs, desert pavements and shallow subsurface salts. Permafr Periglac Process 23:1–14. doi:10.1002/ppp.731CrossRefGoogle Scholar
  4. Kreslavsky MA, Head JW, Marchant DR (2008) Periods of active permafrost layer formation during the geological history of Mars: implications for circum-polar and mid-latitude surface processes. Planet Space Sci 56(2):289–302CrossRefGoogle Scholar
  5. Levy JS, Marchant DR, Head JW (2006) Distribution and origin of patterned ground on Mullins Valley Debris-covered glacier, Antarctica: the roles of ice flow and sublimation. Antarc Sci 18(3):385–397. doi:10.1017/S0954102006000435Google Scholar
  6. Levy JS, Head JW, Marchant DR (2008a) Mars thermal contraction crack polygon classification and distribution: morphological characterization at HiRISE resolution. Lunar Planet Sci XXIX, abstract #1171, HoustonGoogle Scholar
  7. Levy JS, Head JW, Marchant DR (2008b) The role of thermal contraction crack polygons in cold-desert fluvial systems. Antarc Sci. doi:10.1017/S0954102008001375Google Scholar
  8. Levy JS, Head JW, Marchant DR (2009a) Thermal contraction crack polygons on Mars: classification, distribution, and climate implications from HiRISE observations. J Geophys Res 114(E01007). doi:10.1029/2008JE003273Google Scholar
  9. Levy JS, Head JW, Marchant DR (2009b) Thermal contraction crack polygons on Mars: classification, distribution, and context for Phoenix from north and south polar HiRISE observations. Lunar Planet Sci Conf 40, abstract #1616, HoustonGoogle Scholar
  10. Levy JS, Marchant DR, Head JW (2010) Thermal contraction crack polygons on Mars: a synthesis from HiRISE, Phoenix, and terrestrial analog studies. Icarus 206:229–252CrossRefGoogle Scholar
  11. Levy JS, Head JW, Marchant DR (2011) Gullies, polygons and mantles in Martian permafrost environments: cold desert landforms and sedimentary processes during recent Martian geological history. In: Martinin IP, French HM, Perez Alberti A (eds) Ice marginal and periglacial processes and sediments. Special Publications, 354. Geological Society, London, pp 167–182. doi:10.1144/SP354.10Google Scholar
  12. Mangold N (2005) High latitude patterned grounds on Mars: classification, distribution, and climatic control. Icarus 174:336–359CrossRefGoogle Scholar
  13. Mangold N, Maurice S, Feldman WC, Costard F, Forget F (2004) Spatial relationships between patterned ground and ground ice detected by the Neutron Spectrometer on Mars. J Geophys Res 109(E08001). doi:10.1029/2004JE002235Google Scholar
  14. Marchant DR, Head JW (2007) Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192:187–222. doi:10.1016/j.icarus.2007.06.018CrossRefGoogle Scholar
  15. Marchant DR, Lewis AR, Phillips WM, Moore EJ, Souchez RA, Denton GH, Sugden DE, Potter NJ, Landis GP (2002) Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land. Antarc Geol Soc Am Bull 114(6):718–730CrossRefGoogle Scholar
  16. Mellon MT, Arvidson RE, Marlow JJ, Phillips RJ, Asphaug E (2008) Periglacial landforms at the Phoenix landing site and the northern plains of Mars. J Geophys Res 113 (E00A23). doi:10.1029/2007JE003039Google Scholar
  17. Mellon MT, Malin MC, Arvidson RE, Searls ML, Sizemore HG, Heet TL, Lemmon MT, Keller HU, Marshall J (2009) The periglacial landscape at the Phoenix landing site. J Geophys Res 114(E00E06). doi:10.1029/2009JE003418Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Space Exploration DevelopmentCanadian Space AgencySaint-HubertCanada