Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Splotch (Radar)

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_541


Diffuse, quasi-circular region distinguished from its surroundings by radar backscatter cross section (bright, dark, or a combination of bright and dark annuli).


Atmospheric blast zone (interpretation);  Radar-dark spot;  Radar-bright spot; Radar shadow


Splotches are radar-dark or radar-light diffuse, roughly circular regions on the surface of a crusty planetary body (Fig. 1). They are distinguished from their surroundings by radar backscatter cross section (radar albedo). The bright parts are not nearly as bright as the blocky continuous crater ejecta, and the dark parts are not entirely featureless.
This is a preview of subscription content, log in to check access.


  1. Bondarenko NV, Head JW (2009) Crater-associated dark diffuse features on Venus: properties of surficial deposits and their evolution. J Geophys Res 114:E03004. doi:10.1029/2008JE003163Google Scholar
  2. Cook CM, Melosh HJ, Bottke WF Jr (2003) Doublet craters on Venus. Icarus 165:90–100CrossRefGoogle Scholar
  3. Daubar IJ, McEwen AS, Byrne S, Kennedy MR, Ivanov B (2013) The current martian cratering rate. Icarus 2225:506–516. doi:10.1016/j.icarus.2013.04.009CrossRefGoogle Scholar
  4. Ford JP et al (1993) Guide to Magellan image interpretation. Jet Propulsion Laboratory Publication 93–24, Pasadena, pp 75–92Google Scholar
  5. Illés-Almár E (2003) Comparative planetology. In: Geonómia az ezredforduló után, pp 67–100 and In: Geonomy: the synthesizing geoscience for the 21th century, pp 24–36. Hungarian Academy of Sciences, Budapest, 2003–2005Google Scholar
  6. Kirk RL, Chadwick DJ (1994) Splotches on Venus: distribution, properties and classification. Lunar Planet Sci, XXV:705–706, HoustonGoogle Scholar
  7. Kulik LA (1927) On the fall of the Podkamennaya Tunguska meteorite in 1908. J Russ Acad Sci 23:399–402Google Scholar
  8. Longo G (2007) The Tunguska event. In: Bobrowsky PT, Rickman H (eds) Comet/asteroid impacts and human society, an interdisciplinary approach. Springer, Berlin/Heidelberg/New York, pp 303–330CrossRefGoogle Scholar
  9. Malin MC, Edgett KS, Postolova LV, McColley SM, Noe Dobrea EZ (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314:1573–1577. doi:10.1126/science.1135156CrossRefGoogle Scholar
  10. Schaber GG et al (1992) Geology and distribution of impact craters on Venus: what are they telling us? J Geophys Res 97:13257–13301CrossRefGoogle Scholar
  11. Soderblom LA, Chadwick DJ (1992) Surface effects of impacts into Venus’ atmosphere. Lunar Planet Sci Conf XXIII:1329–1330, HoustonGoogle Scholar
  12. Vervack RJ, Melosh HJ (1992) Wind interaction with falling ejecta: origin of parabolic features on Venus. Geophys Res Let 19:525–528. doi:10.1029/91GLO2812CrossRefGoogle Scholar
  13. Wiens G, La Paz L (1935) On the fall of the Podkamennaya Tunguska meteorite in 1908, by L. Kulik, translation. Popul Astron 43:596–599Google Scholar
  14. Zahnle KJ (1992) Airburst origin of dark shadows on Venus. J Geophys Res 97(E6):10243–10255. doi:10.1029/92JE00787CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Konkoly Thege Miklos Astronomical Institute, Research Centre for Astronomy and Earth SciencesBudapestHungary