Skip to main content

Cavernous Weathering Features

  • Reference work entry
  • First Online:

Definition

Formation of micro- to macroscale cavities on the rock surface by selective hollowing out of rock outcrops and boulders.

Category

A type of rock weathering features.

Synonyms

Alveolar weathering (alveoli); Honeycomb weathering (honeycombs); Stone lace; Stone lattice; Tafoni

Description

Cavernous weathering may form solitary cavities or pseudo-regular structures of cavities separated by (sometimes very thin) walls on the surface of rocks. The terms “honeycomb weathering,” “stone lace,” or “stone lattice” are derived from the appearance of these peculiar patterns. The cavities can vary from centimeter to meter scale in width/diameter (see Subtypes). In a mature stage of weathering, the separated alveoli may coalesce and form bigger cavities due to the loss of walls. The orientation of cavities often follows the direction of bedding planes in sedimentary rocks and seems to be influenced also by gravity (Mikuláš 2001; McBride and Picard 2004). Mikuláš (2001) distinguishes...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen CC, Conca JL (1991) Weathering of basaltic rocks under cold, arid conditions – Antarctica and Mars. Proc Lunar Planet Sci Conf 21:711–717, Houston

    Google Scholar 

  • Andre M-F, Hall K (2005) Honeycomb development on Alexander Island, glacial history of George IV Sound and palaeoclimatic implications (Two Step Cliffs / Mars Oasis, W Antarctica). Geomorphology 65:117–138

    Article  Google Scholar 

  • Ashley JW, Golombek MP, Christensen PR, Squyres SW, McCoy TJ, Schröder C, Fleischer I, Johnson JR, Herkenhoff KE, Parker TJ (2011) Evidence for mechanical and chemical alteration of iron-nickel meteorites on Mars: process insights for Meridiani Planum. J Geophys Res 116:E00F20. doi:10.1029/2010JE003672

    Google Scholar 

  • Crumpler LS et al (2005) Mars exploration rover geologic traverse by the spirit rover in the plains of Gusev crater, Mars. Geology 33(10):809–812. doi:10.1130/G21673.1

    Article  Google Scholar 

  • Darwin CR (1839) Journal of researches into the natural history and geology of the countries visited during the voyage of HMS Beagle round the world. D. Appleton, New York

    Google Scholar 

  • Haeberle D (1915) Die gitter-, netz- und wabenförmige Verwitterung der Sandsteine. Geol Rundsch 6:264–285 (in German)

    Article  Google Scholar 

  • Head JW, Kreslavsky MA, Marchant DR (2011) Pitted rock surfaces on Mars: a mechanism of formation by transient melting of snow and ice. J Geophys Res 116:E09007. doi:10.1029/2011JE003826

    Google Scholar 

  • Huinink HP, Pel L, Kopinga K (2004) Simulating the growth of tafoni. Earth Surf Process Landf 29:1225–1233

    Article  Google Scholar 

  • Levy JS, Marchant DR, Head JW (2010) Thermal contraction crack polygons on Mars: a synthesis from HiRISE, Phoenix, and terrestrial analog studies. Icarus 206:229–252

    Article  Google Scholar 

  • Malin MC (1974) Salt weathering on Mars. J Geophys Res 79(26):3888–3894

    Article  Google Scholar 

  • McBride EF, Picard MD (2004) Origin of honeycombs and related weathering forms in Oligocene Macigno sandstone, Tuscan coast near Livorno, Italy. Earth Surf Process Landf 29:713–735

    Article  Google Scholar 

  • McBride EF, Picard MD (2005) Origin and development of tafoni in Tunnel Spring tuff, Crystal Peak, Utah, USA. Earth Surf Process Landf 25:869–879

    Article  Google Scholar 

  • Mikuláš R (2001) Gravity and orientated pressure as factors controlling “honeycomb weathering” of the Cretaceous castellated sandstones (northern Bohemia, Czech Republic). Bull Czech Geol Surv 76(4):217–226

    Google Scholar 

  • Mottershead DN (1994) Tafoni on coastal slopes, south Devon, U.K. Earth Surf Process Landf 19:543–563

    Article  Google Scholar 

  • Mustoe G (1982) The origin of honeycomb weathering. Geol Soc Am Bull 93:108–115

    Article  Google Scholar 

  • Mustoe G (1983) Cavernous weathering in the Capitol Reef Desert, Utah. Earth Surf Process Landf 8:517–526

    Article  Google Scholar 

  • Mutch TA, Grenander SU, Jones KL, Patterson W, Arvidson RE, Guinness EA, Avrin P, Carlston CE, Binder AB, Sagan C (1976) The surface of Mars: the view from the Viking 2 lander. Science 194:1277–1283. doi:10.1126/science.194.4271.1277

    Article  Google Scholar 

  • Robinson DA, Williams RBG (1994) Sandstone weathering and landforms in Britain and Europe. In: Robinson DA, Williams RBG (eds) Rock weathering and landform evolution. Wiley, Chichester, pp 371–391

    Google Scholar 

  • Rodriguez-Navarro C (1998) Evidence of honeycomb weathering on Mars. Geophys Res Lett 25(17):3249–3252

    Article  Google Scholar 

  • Rodriguez-Navarro C, Doehne E, Sebastian E (1999) Origins of honeycomb weathering: the role of salts and wind. Geol Soc Am Bull 111(8):1250–1255

    Article  Google Scholar 

  • Siedel H (2010) Alveolar weathering of Cretaceous building sandstones on monuments in Saxony, Germany. Geol Soc Lond Spec Publ 333:11–24

    Article  Google Scholar 

  • Steiger M (2005) Crystal growth in porous materials - I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469

    Article  Google Scholar 

  • Thomson BJ, Schultz PH (2003) Analogs of Martian surface components: distinguishing impact glass from volcanic glass. Lunar Planet Sci XXXIV, abstract #1416, Houston

    Google Scholar 

  • Thomson BJ, Schultz PH (2007) The geology of the Viking Lander 2 site revisited. Icarus 191:505–523

    Article  Google Scholar 

  • Turkington AV (1998) Cavernous weathering in sandstone: lessons to be learned from natural exposure. Q J Eng Geol 31:375–383

    Article  Google Scholar 

  • Turkington AV, Phillips JD (2004) Cavernous weathering, dynamical instability and self-organization. Earth Surf Process Landf 29:665–675

    Article  Google Scholar 

  • Viles H (2001) Scale issues in weathering studies. Geomorphology 41:63–72

    Article  Google Scholar 

  • Viles H (2005) Self-organized or disorganized? Towards a general explanation of cavernous weathering. Earth Surf Process Landf 30:1471–1473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiner Siedel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Siedel, H. (2015). Cavernous Weathering Features. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_54

Download citation

Publish with us

Policies and ethics