Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Spherule

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_539

Definition

In sedimentary, igneous, and metamorphic environments, the word spherule generally refers to a small sphere or spherical body in μm to mm size range, which is mostly composed of radially arranged crystals (Wolf 1978; Jongerius and Rutherford 1979; Best 2003; Zhou and Chafetz 2009; Glass and Simonson 2013).

Synonyms

Blueberry (Mars); Nodule (used as synonym of spherule or for large, coated spherules)

Subtypes on Earth

  1. (1)

    Nodules (especially in soil-sedimentary environments): Nodules are such pedofeatures, which are related to natural surfaces or voids of the sediment matrix (Stoops 2003), and represent local concentration of chemical compounds (Yaalon 1978). Nodules are differing from the sediment in hardness, color, fabric, and composition (Yaalon 1978). They can possess different external and internal morphology by reason of matrix texture, alternation of precipitation and dissolution processes, and stability of the sediment structure (Wieder and Yaalon 1982;...

This is a preview of subscription content, log in to check access.

References

  1. Barta G (2011) The structures and origin of loess dolls – a case study from the loess-paleosoil sequence of Süttő, Hungary. J Environ Geogr IV(1–4):1–10Google Scholar
  2. Best MG (2003) Igneous and metamorphic petrology. Blackwell Science, Oxford, 734 pGoogle Scholar
  3. Boles JR, Landis CA, Dale P (1985) The Moeraki boulders – anatomy of some septarian concretions. J Sediment Petrol 55:398–406Google Scholar
  4. Burt DM, Knauth LP, Wohletz KH, Sheridan MF (2008) Surge deposit misidentification at Spor Mountain, Utah and elsewhere: a cautionary message for Mars. J Volcanol Geotherm Res 177:755–759CrossRefGoogle Scholar
  5. Calvin WM et al (2008) Hematite spherules at Meridiani: results from MI, Mini-TES, and Pancam. J Geophys Res 113:E12S37. doi:10.1029/2007JE003048Google Scholar
  6. Chan MA et al (2004) A possible terrestrial analogue for haematite concretions on Mars. Nature 429:731–734CrossRefGoogle Scholar
  7. Chapman MG (2005) Newly discovered meteor crater metallic impact spherules: report and implications. Lunar Planet Sci XXXVI, abstract #1907, HoustonGoogle Scholar
  8. Choquette PW (1978) Oolite. In: Fairbridge RW, Bourgeois J (eds) The encyclopedia of sedimentology. Dowden, Hutchinson and Ross, StroudsburgGoogle Scholar
  9. Cohen BA, Clark BC, Gellert R, Klingerhöfer G et al and the Athena Science Team (2013) Mars exploration rover APXS results from Matijevic Hill. 44th Lunar Planet Sci Conf, abstract #2294, HoustonGoogle Scholar
  10. Donahue J (1978) Pisolite. In: Fairbridge RW, Bourgeois J (eds) The encyclopedia of sedimentology. Dowden, Hutchinson and Ross, StroudsburgGoogle Scholar
  11. Drees LR, Wilding LP (1987) Micromorphic record and interpretations of carbonate forms in the Rolling Plains of Texas. Geoderma 40:157–175CrossRefGoogle Scholar
  12. Durand N et al (2010) Calcium carbonate features. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths. Elsevier, Berlin, pp 149–194CrossRefGoogle Scholar
  13. Glass BP, Simonson BM (2013) Distal impact ejecta layers – a record of large impacts in sedimentary deposits. Springer, Berlin/Heidelberg, 716 pCrossRefGoogle Scholar
  14. Glotch TD et al (2006) Fresnel modeling of hematite crystal surfaces and application to Martian hematite spherules. Icarus 181:408–418CrossRefGoogle Scholar
  15. Golden DC, Ming DW, Morris RV (2006) Spherulitic (c-axis) growth for terrestrial (Mauna Kea, Hawaii) and Martian hematite “blueberries”. Goldschmidt conference abstracts 2006 A207Google Scholar
  16. Golden DC et al (2008) Hydrothermal synthesis of hematite spherules and jarosite: implications for diagenesis and hematite spherule formation in sulfate outcrops at Meridiani Planum, Mars. Am Mineral 93:1201–1214CrossRefGoogle Scholar
  17. Hay RL, Wiggins B (1980) Pellets, ooids, sepiolite and silica in three calcretes of the southwestern United States. Sedimentology 27:559–576CrossRefGoogle Scholar
  18. Herkenhoff KE et al (2006) Overview of the microscopic imager investigation during spirit’s first 450 sols in Gusev Crater. J Geophys Res 111:E02S04. doi:10.1029/2005JE002574Google Scholar
  19. Herkenhoff KE et al (2008) Surface processes recorded by rocks and soils on Meridiani Planum, Mars: microscopic imager observations during opportunity’s first three extended missions. J Geophys Res 113:E12S32. doi:10.1029/2008JE003100Google Scholar
  20. IUPAC (2006) Compendium of chemical terminology, 2nd edn (the “Gold book”). Compiled by McNaught AD, Wilkinson A (1997) Blackwell Scientific Publications, Oxford. XML on-line corrected version: http://goldbook.iupac.org (2006) created by Nic M, Jirat J, Kosata B; updates compiled by Jenkins A. ISBN 0-9678550-9-8. doi:10.1351/goldbook. (Ostwald ripening – doi:10.1351/goldbook.O04348)
  21. Jiamao H et al (1997) Stable isotope composition of the carbonate concretion in loess and climate change. Quat Int 37:37–43CrossRefGoogle Scholar
  22. Jongerius A, Rutherford GK (1979) Glossary of soil micromorphology. Centre for Agricultural Publishing and Documentation, WageningenGoogle Scholar
  23. Kádár L (1954) A lösz keletkezése és pusztulása. MTA Társadalmi-Történeti Tudományok Osztályának Közleményeiből 4/3–4:109–114Google Scholar
  24. Kemp RA (1998) Role of micromorphology in paleopedological research. Quat Int 51(52):133–141CrossRefGoogle Scholar
  25. Lane MD et al (2002) Evidence for platy hematite grains in Sinus Meridiani, Mars. J Geophys Res 107(E12):5126. doi:10.1029/2001JE001832CrossRefGoogle Scholar
  26. McLennan SM, Bell JF, Calvin WM et al (2005) Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240:95–121CrossRefGoogle Scholar
  27. Merino E, Coleman M (2006) Weathering-made pisolites: analogue for Martian blueberries. Goldschmidt conference abstracts 2006 A416Google Scholar
  28. Miller DL, Mora CI, Driese SG (2007) Isotopic variability in large carbonate nodules in Vertisols: implications for climate and ecosystem assessments. Geoderma 142:104–111CrossRefGoogle Scholar
  29. Morris RV, Ming DW, Graff TG et al (2005) Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: possible clues for the occurrence of hematite-rich spherules in the burns formation at Meridiani Planum, Mars. Earth Planet Sci Lett 240:168–178CrossRefGoogle Scholar
  30. Mozley PS (1996) The internal structure of carbonate concretions in mudrocks: a critical evaluation of the conventional concentric model of concretion growth. Sediment Geol 103:85–91CrossRefGoogle Scholar
  31. Potter SL, Chan MA, Petersen EU, Darby Dyar M, Sklute E (2011) Characterization of Navajo Sandstone concretions: Mars comparison and criteria for distinguishing diagenetic origins. Earth Planet Sci Lett 301:444–456CrossRefGoogle Scholar
  32. Schäftlein S (1996) Genese und Struktur von Lößkindln in Böden unterschiedlicher Hydromorphie. Unpublished thesis. University of HannoverGoogle Scholar
  33. Seilacher A (2001) Concretion morphologies reflecting diagenetic and epigenetic pathways. Sediment Geol 143:41–57CrossRefGoogle Scholar
  34. Sellés-Martínez J (1996) Concretion morphology, classification and genesis. Earth-Sci Rev 41:177–210CrossRefGoogle Scholar
  35. Squyres SW, Knoll AH (2005) Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett 240:1–10CrossRefGoogle Scholar
  36. Squyres SW, Arvidson RE, Bell JF III et al (2004) The opportunity rover’s Athena science investigation at Meridiani Planum, Mars. Science 306:1698–1703CrossRefGoogle Scholar
  37. Stoops G (2003) Guidelines for analysis and description of soil and regolith thin sections. Soil Science Society of America, Madison, 184 pGoogle Scholar
  38. Weber KA, Spanbauer TL, Kilburn MR, Loope DB, Kettler RM (2012) Biosignatures link microorganisms to iron mineralization in a paleoaquifer. Geology 40:747–750CrossRefGoogle Scholar
  39. Wieder M, Yaalon DH (1982) Micromorphological fabrics and developmental stages of carbonate nodular forms related to soil characteristics. Geoderma 28:203–220CrossRefGoogle Scholar
  40. Wolf KH (1978) Limestones. In: Fairbridge RW, Bourgeois J (eds) The encyclopedia of sedimentology. Dowden, Hutchinson and Ross, StroudsburgGoogle Scholar
  41. Yaalon DH (1978) Nodules in sediments. In: Fairbridge RW, Bourgeois J (eds) The encyclopedia of sedimentology. Dowden, Hutchinson and Ross, StroudsburgGoogle Scholar
  42. Zhou J, Chafetz HS (2009) Biogenic caliches in Texas: the role of organisms and effect of climate. Sediment Geol 222(3–4):207–225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gabriella Barta
    • 1
  • D. C. Golden
    • 2
  • John C. Dixon
    • 3
  1. 1.Department of Physical GeographyEötvös Loránd University, Institute of Geography and Earth SciencesBudapestHungary
  2. 2.ESCG\ARES\NASAHoustonUSA
  3. 3.Department of Geosciences, University of ArkansasFayettevilleUSA