Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Sorted Patterned Ground

  • Thierry Feuillet
  • Giacomo Certini
  • Fiorenzo C. Ugolini
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_536

Definition

Geometric pattern of the ground, determined by the arrangement of stones formed by the sorting of clasts from fine-grained sediments in freeze–thaw cycles (Gallagher et al. 2011).

Category

Description

Surface area displaying a self-organized quasi-regular repeated pattern resulting from active frost-related processes or relict forms.

Subtypes

  1. (1)

    Sorted circles appear as a circular border of clasts surrounding a center of fines. The stony borders show size segregation with the largest clasts at the surface of the border with decreasing size with depth. On horizontal surface they retain their circular shape, but on slopes they become oblong or form stripes. They vary in diameter from a few centimeters to about 4 m.

    The process of patterned ground formation may create stony areas among the sorted features that act as a trap for airborne fines as well as those produced by in situ weathering. The storage of these fines...

This is a preview of subscription content, log in to check access

References

  1. Balme MR, Gallagher C, Page DP, Murray JB, Muller J-P (2009) Sorted stone circles in Elysium Planitia, Mars: implications for recent martian climate. Icarus 200:30–38. doi:10.1016/j.icarus.2008.11.010CrossRefGoogle Scholar
  2. Chambers MJG (1967) Investigations of patterned ground at Signy Island, South Orkney Islands. III: miniature patterns, frost heaving and general conclusions. Br Antarctic Surv Bull 12:1–22Google Scholar
  3. Feuillet T, Mercier D (2012) Post-Little Ice Age patterned ground development on two Pyrenean proglacial areas: from deglaciation to periglaciation. Geografiska Annaler Ser A 94:363–376. doi:10.1111/j.1468-0459.2012.00459.xCrossRefGoogle Scholar
  4. Gallagher C, Balme MR, Conway SJ, Grindrod PM (2011) Sorted clastic stripes, lobes and associated gullies in high-latitude craters on Mars: landforms indicative of very recent, polycyclic ground-ice thaw and liquid flows. Icarus 211:458–471CrossRefGoogle Scholar
  5. Gallagher C, Balme MR (2011) Landforms indicative of ground-ice thaw in the northern high latitudes of Mars. In: Balme MR et al (eds) Martian geomorphology, vol 356, Geological society special publication. Geological Society, London, pp 87–111Google Scholar
  6. Goldthwait RP (1976) Frost sorted patterned ground: a review. Quatern Res 6:27–35. doi:10.1016/0033-5894(76)90038-7CrossRefGoogle Scholar
  7. Hallet B (1993) Geometry and size of sorted patterns in periglacial soil reflect convection; but what is convecting? (abs.): Eos (Transactions, American Geophysical Union) Supplement, 20 Apr, p 152Google Scholar
  8. Hallet B, Prestrud S (1986) Dynamics of periglacial sorted circles in western Spitsbergen. Quatern Res 26:81–99CrossRefGoogle Scholar
  9. Jahn A (1975) Problems of the periglacial zone. PWN Polish Scientific Publishers, WarszawaGoogle Scholar
  10. Kessler MA, Werner BT (2003) Self-organization of sorted patterned ground. Science 299:380–383. doi:10.1126/science.1077309CrossRefGoogle Scholar
  11. Krantz WB, Gleason KJ, Caine N (1988) Patterned ground. Sci Am 259:68–76CrossRefGoogle Scholar
  12. Mackay JR (1980) The origin of hummocks, western Arctic coast. Can J Earth Sci 17:996–1006CrossRefGoogle Scholar
  13. Mangold N (2003) Patterned ground on Mars: evidence for recent climatic variations. In: Phillips M, Springman S, Arenson LU (eds) Permafrost. Swets & Zeitlinger, Lisse, pp 723–728Google Scholar
  14. Mangold N (2005) High latitude patterned grounds on Mars: classification, distribution and climatic control. Icarus 174:336–359. doi:10.1016/j.icarus.2004.07.030CrossRefGoogle Scholar
  15. Matthews JA, Shakesby RA, Berrisford MS, McEwen LJ (1998) Periglacial patterned ground on the Styggedalsbreen glacier foreland, Jotunheimen, southern Norway: micro-topographic, paraglacial and geoecological controls. Permafr Periglac Process 9:147–166. doi:10.1002/(SICI)1099-1530(199804/06)9:2<147::AID-PPP278>3.0.CO;2-9CrossRefGoogle Scholar
  16. Meinardus W (1912) Beobachtungen über Detritussortierung und Strukturboden auf Sptizbergen. Gesellschaft fiir Erdkunde zu Berlin, Zeitschrift, pp 250–259Google Scholar
  17. Orloff T, Kreslavsky M, Asphaug E, Korteniemi J (2011) Boulder movement at high northern latitudes of Mars. J Geophys Res Planets 116:E11006Google Scholar
  18. Orloff TC, Kreslavsky MA, Asphaug EI (2013) Possible mechanism of boulder clustering on Mars. Icarus 225:992–999Google Scholar
  19. Sharpe CFS (1938) Landslides and related phenomena. Columbia University Press, New YorkGoogle Scholar
  20. Sharp RP (1942) Soil structures in the St. Elias Range, Yukon Territory. J Geomorphol 5:274–301Google Scholar
  21. Ugolini FC, Corti G, Certini G (2006) Pedogenesis in the sorted patterned ground of Devon Island, Nunavut, Canada. Geoderma 136:87–106. doi:10.1016/j.geoderma.2006.03.030CrossRefGoogle Scholar
  22. Van Vliet-Lanhoe B (1991) Differential frost heave, load casting and convection: converging mechanisms: a discussion of the origin of cryoturbation. Permafr Periglac Process 2:123–139CrossRefGoogle Scholar
  23. Washburn AL (1950) Patterned ground. Revue Canadienne de Géographie 4:5–59Google Scholar
  24. Washburn AL (1956) Classification of patterned ground and review of suggested origins. Geol Soc Am Bull 67:823–865CrossRefGoogle Scholar
  25. Washburn AL (1997) Plugs and plug circles: a basic form of patterned ground, Cornwallis Island, Arctic Canada: origin and implications. Geol Soc Am Memoir 190, 87pGoogle Scholar
  26. Wilson P, Clark R (1991) Development of miniature sorted patterned ground following soil erosion in East Falkland, South Atlantic. Earth Surf Process Landf 16:369–376. doi:10.1002/esp.3290160409CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Thierry Feuillet
    • 1
  • Giacomo Certini
    • 2
  • Fiorenzo C. Ugolini
    • 2
  1. 1.Laboratoire LETG-Nantes-Géolittomer, CNRSNantesFrance
  2. 2.Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente (DISPAA)Università degli Studi di FirenzeFlorenceItaly