Skip to main content

Lobate Debris Apron

Definition

Lobate debris aprons (LDA) are ice-rich flow features in the midlatitude (25–60°N and °S) regions of Mars that initially form at the base of isolated massifs, mesas, and escarpments and later flows downslope.

Category

A type of viscous flow feature in fretted terrain.

Synonyms

Circumferential aprons

Related Terms

Glacial flow, Integrated valley glaciers, Alpine glaciation, Debris-covered glaciers, Viscous flow features

Description

Large, thick accumulation of ice-rich debris at the base of high-standing features with a gently downsloped surface and a convex lobate terminus (in cross section) (Fig. 1). In planform, their shapes range from individual elongated lobes to widespread apron complexes with relatively straight terminal fronts (Fig. 2). Individual aprons or apron complexes often surround isolated mesas/plateaus, massifs, and along the base of valley walls or escarpment flanks (Fig. 3). Apron surfaces may have flow features that are concentric to the outer margin of...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arfstrom J, Hartmann WR (2005) Martian flow features, moraine-like ridges, and gullies: terrestrial analogs and interrelationships. Icarus 174. doi:10.1016/j.icarus.2004.05.026

    Google Scholar 

  • Baker DMH, Head JW, Marchant DR (2010) Flow patterns of lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars: evidence for extensive mid-latitude glaciation in the Late Amazonian. Icarus 207. doi:10.1016/j.icarus.2009.11.017

    Google Scholar 

  • Baker DMH, Head JW, Marchant DR (2011) New evidence for regional glacial modification of plains units in Deuteronilus Mensae, Mars. Lunar Planet Sci Conf 42, abstract #1422, Houston

    Google Scholar 

  • Berman DC, Crown DA, Bleamaster LF (2009) Degradation of mid-latitude craters on Mars. Icarus 200. doi:10.1016/j.icarus.2008.10.026

    Google Scholar 

  • Berman DC, Crown DA, Joseph ECS (2011) Determining erosional/depositional history of Deuteronilus Mensae, Mars using categorized crater size–frequency distributions. Lunar Planet Sci Conf 42, abstract #1435, Houston

    Google Scholar 

  • Carr MH (2001) Mars global surveyor observations of Martian fretted terrain. J Geophys Res 106:23,571–23,593

    CrossRef  Google Scholar 

  • Carr MH, Schaber GG (1977) Martian permafrost features. J Geophys Res 82:4039–4054

    CrossRef  Google Scholar 

  • Chuang FC, Crown DA (2005a) Surface characteristics and degradational history of debris aprons in the Tempe Terra/Mareotis Fossae region of Mars. Icarus 179. doi:10.1016/j.icarus.2005.05.014

    Google Scholar 

  • Chuang FC, Crown DA (2005b) Geomorphic analyses of lobate debris aprons in Deuteronilus Mensae, Mars. American Geophysical Union fall meeting, P23A–0176

    Google Scholar 

  • Chuang FC, Crown DA (2009) Geologic map of MTM 35337, 40337, and 45337 quadrangles, Deuteronilus Mensae Region of Mars. U.S. Geological Survey Scientific Investigations Map 3079, scale 1:1,000,000

    Google Scholar 

  • Colaprete A, Jakosky BM (1998) Ice flow and rock glaciers on Mars. J Geophys Res 103:5897–5909

    CrossRef  Google Scholar 

  • Crown DA (2005) Styles and timing of volatile-driven activity in the eastern Hellas region of Mars. J Geophys Res 110. doi:10.1029/2005JE002496

    Google Scholar 

  • Crown DA, McElfresh SBZ, Pierce TL, Mest SC (2003) Geomorphology of debris aprons in the eastern Hellas region of Mars. Lunar Planet Sci Conf 34, abstract #1126, Houston

    Google Scholar 

  • Degenhardt JJ, Giardino JR (2003) Subsurface investigation of a rock glacier using ground penetrating radar: implications for locating stored water on Mars. J Geophys Res 108(E4):8036. doi:10.1029/2002JE001888

    CrossRef  Google Scholar 

  • Dickson JL, Head JW, Marchant DR (2010) Kilometer-thick ice accumulation and glaciation in the northern mid-latitudes of Mars: Evidence for crater-filling events in the Late Amazonian at the Phlegra Montes. Earth Planet Sci Lett 294. doi:10.1016/j.epsl.2009.08.031

    Google Scholar 

  • Dickson JL, Head JW, Fassett CI (2012) Patterns of accumulation and flow of ice in the mid-latitudes of Mars during the Amazonian. Icarus 219. doi:10.1016/j.icarus.2012.03.010

    Google Scholar 

  • Forget F, Haberle RM, Montmessin F, Levrard B, Head JW (2006) Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311. doi:10.1126/science.1120335

    Google Scholar 

  • Greeley R, Guest JE (1987) Geologic map of the eastern equatorial region of Mars. USGS Misc Invest Ser Map I1802-B

    Google Scholar 

  • Grindrod PM, Fawcett SA (2011) Possible climate-related signals in high-resolution topography of lobate debris aprons in Tempe Terra, Mars. Geophys Res Lett 38. doi:10.1029/2011GL049295

    Google Scholar 

  • Hartmann WK, Ansan V, Berman DC, Mangold N, Forget F (2014) Comprehensive analysis of glaciated Martian crater Greg. Icarus 228. doi:10.1016/j.icarus.2013.09.016

    Google Scholar 

  • Hauber E, Van Gasselt S, Chapman MG, Neukum G (2008) Geomorphic evidence for former lobate debris aprons at low latitudes on Mars: Indicators of the Martian paleoclimate. J Geophys Res 113. doi:10.1029/2007JE002897

    Google Scholar 

  • Holt JW, Safaeinili A, Plaut J, Head JW, Phillips RJ, Seu R, Kempf SD, Choudhary P, Young DA, Putzig NE, Biccari D, Gim Y (2008) Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322:1235–1238. doi:10.1126/science.1164246

    CrossRef  Google Scholar 

  • Hubbard B, Milliken RE, Kargel JS, Limaye A, Souness C (2011) Geomorphological characterisation of a mid-latitude glacier-like form: Hellas Planitia, Mars. Icarus 211. doi:10.1016/j.icarus.2010.10.021

    Google Scholar 

  • Irwin RP, Watters TR (2004) Sedimentary resurfacing and fretted terrain development along the crustal dichotomy boundary, Aeolis Mensae, Mars. J Geophys Res 109. doi:10.1029/2004JE002248

    Google Scholar 

  • Joseph ECS, Crown DA, Berman DC, Chuang FC (2011) Using CTX-based crater size–frequency distributions to refine the geologic history of Deuteronilus Mensae, Mars. Lunar Planet Sci Conf 42, abstract #1206, Houston

    Google Scholar 

  • Kostama VP, Kreslavsky MA, Head JW (2006) Recent high-latitude icy mantle in the northern plains of Mars: characteristics and ages of emplacement. Geophys Res Lett 33. doi:10.1029/2006GL025946

    Google Scholar 

  • Levy JS, Head JW, Marchant DR (2009) Concentric crater fill in Utopia Planitia: history and interaction between glacial “brain terrain” and periglacial mantle processes. Icarus 202. doi:10.1016/j.icarus.2009.02.018

    Google Scholar 

  • Levy J, Head JW, Marchant DR (2010) Concentric crater fill in the northern midlatitudes of Mars: formation processes and relationships to similar landforms of glacial origin. Icarus 209. doi:10.1016/j.icarus.2010.03.036

    Google Scholar 

  • Li H, Robinson MS, Jurdy DM (2005) Origin of Martian northern hemisphere mid-latitude lobate debris aprons. Icarus 176:382–394. doi:10.1016/j.icarus.2005.02.011

    CrossRef  Google Scholar 

  • Lucchitta BK (1978) Geologic map of the Ismenius Lacus quadrangle of Mars. U.S. Geological Survey Miscellaneous Investigations Map I-1065, scale 1:5,000,000

    Google Scholar 

  • Lucchitta BK (1984) Ice and debris in the fretted terrain, Mars. J Geophys Res Suppl 89:409

    CrossRef  Google Scholar 

  • Madeleine J-B, Forget F, Head JW, Levrard B, Montmessin F, Millour E (2009) Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203. doi:10.1016/j.icarus.2009.04.037

    Google Scholar 

  • Malin MC, Edgett KS (2001) Mars global surveyor Mars Orbiter Camera – interplanetary cruise through primary mission. J Geophys Res 106. doi:10.1029/2000JE001455

    Google Scholar 

  • Mangold N (2003) Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: evidence for ice sublimation initiated by fractures. J Geophys Res 108. doi:10.1029/2002JE001885

    Google Scholar 

  • Mangold N, Allemand P (2001) Topographic analysis of features related to ice on Mars. Geophys Res Lett 28:407–410

    CrossRef  Google Scholar 

  • Marchant DR, Head JW (2007) Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 192:187–222

    CrossRef  Google Scholar 

  • McGill GE (2002) Geologic map trensecting the highland/lowland boundary zone, Arabia Terra, Mars––Quadrangles 30332, 35332, 40332, and 45332. USGS Geol Invest Ser Map I–2746

    Google Scholar 

  • Mest SC, Crown DA (2002) Geologic map of MTM -40252 and -40257 quadrangles, Reull Vallis region of Mars. USGS Geol Ivest Ser Map I–2730

    Google Scholar 

  • Mest SC, Crown DA (2003) Geologic map of MTM -45252 and -45257 quadrangles, Reull Vallis region of Mars. USGS Geol Invest Ser Map I–2763

    Google Scholar 

  • Milliken RE, Mustard JF, Goldsby DL (2003) Viscous flow features on the surface of Mars––observations from high-resolution Mars Orbiter Camera (MOC) images. J Geophys Res 108. doi:10.1029/2002JE002005

    Google Scholar 

  • Morgan GA, Head JW, Marchant DR (2009) Lineated valley fill (LVF) and lobate debris aprons (LDA) in the Deuteronilus Mensae northern dichotomy boundary region, Mars: constraints on the extent, age and episodicity of Amazonian glacial events. Icarus 202. doi:10.1016/j.icarus.2009.02.017

    Google Scholar 

  • Mustard JF, Cooper CD, Rifkin MK (2001) Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412:411–414

    CrossRef  Google Scholar 

  • Pierce TL, Crown DA (2003) Morphologic and topographic characteristics of debris aprons in the eastern Hellas region, Mars. Icarus 163. doi:10.1016/S0019-1035(03)00046-0

    Google Scholar 

  • Plaut JJ, Safaeinili A, Holt JW, Phillips RJ, Head JW, Seu R, Putzig NE, Frigeri A (2009) Radar evidence for ice in lobate debris aprons in the midnorthern latitudes of Mars. Geophys Res Lett 36, L02203. doi:10.1029/2008GL036379

    CrossRef  Google Scholar 

  • Quartini E, Holt JW, Brothers TC (2011) Internal structure of a lobate debris apron complex in eastern Hellas: evidence for multiple mid-latitude glaciations on Mars. Lunar Planet Sci Conf 42, abstract #2470, Houston

    Google Scholar 

  • Rutledge AM, Christensen PR (2011) Hypsometric analysis of glacial features in the east Hellas Basin region, Mars: implications for past climate shifts. Lunar Planet Sci Conf 42, abstract #2124, Houston

    Google Scholar 

  • Safaeinili A, Holt J, Plaut J, Posiolova L, Phillips R, Head JW, Seu R and the SHARAD Team (2009) New radar evidence for glaciers in Mars Phlegra Montes region. Lunar Planet Sci Conf 40, abstract #1988, Houston

    Google Scholar 

  • Schon SC, Head JW, Milliken RE (2009) A recent ice age on Mars: evidence for climate oscillations from regional layering in mid-latitude mantling deposits. Geophys Res Lett 36. doi:10.1029/2009GL038554

    Google Scholar 

  • Squyres SW (1978) Martian fretted terrain: flow of erosional debris. Icarus 34:600–613

    CrossRef  Google Scholar 

  • Squyres SW (1992) Ice in the Martian regolith. In: Kieffer HH, Jakosky BM, Snyder CW, Matthews MS (eds) Mars. University of Arizona Press, Tucson, pp 523–554

    Google Scholar 

  • Turtle EP, Pathare AV, Crown DA, Chuang FC, Hartmann WK, Greenham JC, Bueno NF (2003) Modeling the deformation of lobate debris aprons on Mars by creep of ice-rich permafrost. International conference on Mars polar science and exploration 3, #8091

    Google Scholar 

  • Van Gasselt S, Hauber E, Rossi AP, Dumke A, Orosei R, Neukum G (2011) Periglacial geomorphology and landscape evolution of the Tempe Terra region, Mars. In: Balme MR, Bargery AS, Gallagher CJ, Gupta S (eds) Martian geomorphology. Geological Society, London, pp 43–67, Special publications 356

    Google Scholar 

  • Whalley WB, Azizi F (2003) Rock glaciers and protalus landforms: analogous forms and ice sources on Earth and Mars. J Geophys Res 108. doi:10.1029/2002JE001864

    Google Scholar 

  • Williams RME (2006) Latitude dependence of meter-scale surface textures in Deuteronilus Mensae. Lunar Planet Sci Conf 37, abstract #1445, Houston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank C. Chuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Chuang, F.C. (2015). Lobate Debris Apron. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_489

Download citation