Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Complex Crater

  • Henrik Hargitai
  • Teemu Öhman
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_429


An impact structure larger than a  simple crater displaying complex morphology.

Note: In the crater classification scheme of Melosh (1989), peak-ring basins/craters, which display two rings, are considered to be the largest type of complex craters, and the term impact basin is applied to multi-ring impact structures with three or more rings ( basin).


Walled plain (obsolete, used by amateur astronomers).


“Main sequence” craters on rocky bodies, with progressively increasing diameter (Hartmann and Wood 1971; Baker et al. 2011) (Figs. 1, 2, and 3):
This is a preview of subscription content, log in to check access.


  1. Abramov O, Kring DA (2004) Numerical modeling of an impact-induced hydrothermal system at the Sudbury crater. J Geophys Res 109: E10007. doi:10.1029/2003JE00213CrossRefGoogle Scholar
  2. Abramov O, Kring DA (2007) Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. Meteorit Planet Sci 41(1):93–112CrossRefGoogle Scholar
  3. Baker DMH, Head JW, Schon SC, Ernst CM et al (2011) The transition from complex crater to peak-ring basin on Mercury: new observations from MESSENGER flyby data and constraints on basin formation models. Planet Space Sci 59:1932–1948CrossRefGoogle Scholar
  4. Barlow NG (2005) A review of Martian impact crater ejecta structures and their implications for target properties. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geol Soc Am Spec Pap 384Google Scholar
  5. Barlow NG (2010) Central pit craters: observations from Mars and Ganymede and implications for formation models. In: Gibson RL, Reimold WU (eds) Large meteorite impacts and planetary evolution IV. Geol Soc Am Spec Pap 465Google Scholar
  6. Beer W, Mädler JH (1837) Der Mond nach seinen kosmischen und individuellen Verhältnissen oder Allgemeine vergleichende Selenographie. Simon Schropp, BerlinGoogle Scholar
  7. Beer W, Mädler JH (1838) Survey of the surface of the Moon. Edinburgh New Philos J 25:38–67 (English translation, shortened)Google Scholar
  8. Boon JD, Albritton CC Jr (1937) Meteorite scars in ancient rocks. Field Lab 5:53–64Google Scholar
  9. Bray VJ, Collins GS, Morgan JV, Schenk PM (2008) The effect of target properties on crater morphology: comparison of central peak craters on the Moon and Ganymede. Meteorit Planet Sci 43(12):1979–1992CrossRefGoogle Scholar
  10. Bray VJ, Schenk PM, Melosh HJ, Morgan JV, Collins GS (2012) Ganymede crater dimensions – implications for central peak and central pit formation and development. Icarus 217:115–129CrossRefGoogle Scholar
  11. Carr MH, Crumpler LS, Cutts JA, Greeley R, Guest JE, Masursky H (1977) Martian impact craters and emplacement of ejecta by surface flow. J Geophys Res 82(28):4055–4065CrossRefGoogle Scholar
  12. Cintala MJ, Head JW, Mutch TA (1976) Characteristics of fresh Martian craters as a function of diameter: comparison with the Moon and Mercury. Geophys Res Lett 3(3):117–120CrossRefGoogle Scholar
  13. Collins G (2002) Numerical modelling of large impact crater collapse. University of London, London, PhD thesisGoogle Scholar
  14. Crampton J (1863) The Lunar world. Its scenery, motions, etc. Adam and Charles Black, EdinburghGoogle Scholar
  15. Dence MR (1964) A comparative structural and petrographic study of probable Canadian meteorite craters. Meteoritics 2(3):249–270CrossRefGoogle Scholar
  16. Elger TG (1895) The Moon – a full description and map of its principal physical features. George Philip & Son, LondonGoogle Scholar
  17. Florensky CP, Basilevsky AT, Grebennik NN (1976) The relationship between Lunar crater morphology and crater size. Moon 16:59–70CrossRefGoogle Scholar
  18. French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures, LPI Contribution No. 954. Lunar and Planetary Institute, Houston, 120 ppGoogle Scholar
  19. Garvin JB, Sakimoto SHE, Frawley JJ (2003) Craters on Mars: global geometric properties from gridded MOLA topography. Sixth international conference on Mars, abstract #3277Google Scholar
  20. Giese B, Denk T, Neukum G, Roatsch T, Helfenstein P, Thomas PC, Turtle E, McEwen A, Porco CC (2008) The topography of Iapetus’ leading side. Icarus 193:359–371CrossRefGoogle Scholar
  21. Grieve RAF (1987) Terrestrial impact structures. Ann Rev Earth and Planet Sci 15:245–270CrossRefGoogle Scholar
  22. Grieve RAF (2006) Impact structures in Canada. Geological Association of Canada, St. JohnsGoogle Scholar
  23. Grieve RAF, Robertson PB, Dence MR (1981) Constraints on the formation of ring impact structures, based on terrestrial data. In: Schultz PH, Merrill RB (eds) Multi-ring basins. Proc Lunar Planet Sci 12A, Geochim Cosmochim Acta Suppl 15:275–288Google Scholar
  24. Hartmann WK, Wood CA (1971) Moon: origin and evolution of multi-ring basins. The Moon 3:3–78CrossRefGoogle Scholar
  25. Herrick RR, Lyons SN (1998) Inversion of crater morphometric data to gain insight on the cratering process. Meteorit Planet Sci 33:131–143CrossRefGoogle Scholar
  26. Herrick RR, Sharpton VL, Malin MC, Lyons SN, Feely K (1997) Morphology and morphometry of impact craters. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II – geology, geophysics, atmosphere, and solar wind environment. The University of Arizona Press, TucsonGoogle Scholar
  27. Ivanov BA, Basilevsky AT, Sazonoya LV (1982) Formation of the central uplift in meteoritic craters. Meteoritika 40:60–81, In Russian. English technical translation 1986. NASA TM-88427Google Scholar
  28. Kinser RM, Gibbs WB, Barlow NG (2013) A new database of craters 5-Km-diameter and larger for the Moon: Western Nearside. 44th Lunar Planet Sci Conf, abstract #1679, HoustonGoogle Scholar
  29. van Langren MF (1645) Plenilunii lumina Austriaca Philippica. Brussel. Copper engraving.Google Scholar
  30. Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, Oxford, 245 ppGoogle Scholar
  31. Melosh HJ, Ivanov BA (1999) Impact crater collapse. Ann Rev Earth Planet Sci 27:385–415CrossRefGoogle Scholar
  32. Neison E (1876) The Moon and the condition and configurations of its surface. Longmans, Green, and Co, LondonGoogle Scholar
  33. Oberbeck VR, Morrison RH, Hörz F (1975) Transport and emplacement of crater and basin deposits. The Moon 13:9–26CrossRefGoogle Scholar
  34. Pearce SJ, Melosh HJ (1986) Terrace width variations in complex Lunar craters. Geophys Res Lett 13(13):1419–1422CrossRefGoogle Scholar
  35. Pike RJ (1977a) Size dependence in the shape of fresh impact craters on the Moon. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon, New York, pp 489–509Google Scholar
  36. Pike RJ (1977b) Apparent depth/apparent diameter relation for lunar craters. Proc 8th Lunar Sci Conf, Geochim Cosmochim Acta Suppl 8:3427–3436Google Scholar
  37. Pike R (1980) Control of crater morphology by gravity and target type: Mars, Earth, Moon. Proc 11th Lunar Planet Sci Conf, Geochim Cosmochim Acta Suppl 14:2159−2189Google Scholar
  38. Pike RJ (1988) Geomorphology of impact craters on Mercury. In: Mercury. University of Arizona Press, Tucson, pp 165–273Google Scholar
  39. Pike RJ, Spudis PD (1987) Basin-ring spacing on the Moon, Mercury and Mars. Earth Moon Planet 39:129–194CrossRefGoogle Scholar
  40. Pohn HA (1963) New measurements of steep Lunar slopes. Publ Astron Soc Pac 75:186–187CrossRefGoogle Scholar
  41. Quaide WL, Gault DE, Schmidt RA (1965) Gravitative effects on lunar impact structures. Ann N Y Acad Sci 123:563–572CrossRefGoogle Scholar
  42. Robbins SJ, Hynek BM (2012) A new global database of Mars impact craters ≥ 1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter. J Geophys Res 117:E06001Google Scholar
  43. Schenk P (1989) Crater formation and modification on the icy satellites of Uranus and Saturn: depth/diameter and central peak occurrence. J Geophys Res 94(B4):3813–3832CrossRefGoogle Scholar
  44. Schenk P (1991) Ganymede and Callisto: complex crater formation and planetary crusts. J Geophys Res 96(E1):15635–15664CrossRefGoogle Scholar
  45. Schenk P (2002) Thickness constraints on the icy shells of the Galilean satellites from comparison of crater shapes. Nature 417:419–421CrossRefGoogle Scholar
  46. Schenk P, Sharpton VL (1992) The simple-to-complex crater transition on Venus. Lunar Planet Sci XXIII:1219–1220Google Scholar
  47. Schenk P et al (2012a) Impact cratering on a mid-sized planetary body: insights from morphology as seen by Dawn at Vesta. 43rd Lunar Planet Sci Conf, abstract #2677, HoustonGoogle Scholar
  48. Schenk P, O’Brien DP, Marchi S, Gaskell R, Preusker F, Roatsch T, Jaumann R, Buczkowski D, McCord T, McSween HY, Williams D, Yingst A, Raymond C, Russell C (2012b) The geologically recent giant impact basins at Vesta’s South Pole. Suppl Mater Sci 336:694. doi:10.1126/science.1223272Google Scholar
  49. Schenk P, Vincent J-B, Marchi S, O’Brien DP, Gaskell R, Preusker F, Raymond CA, Russell CT (2013) Impact crater morphologies on vesta in solar system context. 44th Lunar Planet Sci Conf, abstract #2039, HoustonGoogle Scholar
  50. Schröter JH (1791) Selenotopographische fragmente. CG Fleckeinsen, LilenthalGoogle Scholar
  51. Stephan K, Jaumann R, Wagner R (2013) Geology of icy bodies. In: Castillo-Rogez J, Gudipati MS (eds) The science of solar system ices. Springer, New York, pp 279–371CrossRefGoogle Scholar
  52. Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU, Spray JG (2004) Impact structures: what does crater diameter mean? Lunar Planet Sci XXXV, abstract #1772, HoustonGoogle Scholar
  53. Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU (2005) What does crater diameter mean? In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III, GSA Special Paper 384. Geological Society of America, Boulder, pp 25–42Google Scholar
  54. Vizgirda J, Ahrens TJ (1981) Structural study of cactus crater. Proc Lunar Planet Sci 12B, Geochim Cosmochim Acta Suppl 15:1623–1639Google Scholar
  55. White OL, Schenk PM (2011) Crater shapes on the Saturnian satellites: new measurements using Cassini stereo images. 42nd Lunar Planet Sci Conf, abstract #2283, HoustonGoogle Scholar
  56. Wilhelms DE (1987) The geologic history of the Moon. U.S. Geol Surv Prof Pap 1348Google Scholar
  57. Wood CA, Andersson L (1978a) New morphometric data for fresh lunar craters. Proc 9th Lunar Planet Sci Conf, Geochim Cosmochim Acta Suppl 10:3669–3689Google Scholar
  58. Wood CA, Andersson L (1978b) Lunar crater morphometry: new data. Lunar Planet Sci IX: 1267–1269Google Scholar
  59. Wood CA, Head JW (1976) Comparison of impact basins on Mercury, Mars and the Moon. Proc 7th Lunar Sci Conf, Geochim Cosmochim Acta Suppl 7:3629–3651Google Scholar
  60. Wood CA, Head JW, Cintala MJ (1978) Interior morphology of fresh Martian craters: the effects of target characteristics. Proc 9th Lunar Planet Sci Conf, Geochim Cosmochim Acta Suppl 10:3691–3709Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA
  2. 2.Arctic Planetary Science InstituteRovaniemiFinland