Skip to main content

Central Peak Crater

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

Complex crater with a single central uplift, a tight cluster of peaks, or a tightly spaced ring-like arrangement of peaks (e.g., Baker et al. 2011).

Category

A type of complex crater.

Description

The central peak is the simplest interior feature of complex craters. Many central peak craters have scalloped rims, terraced inner walls, and hummocky floors, on both rocky and icy bodies. These are inferred to represent failure by slumping and mass wasting of materials onto the floor (Greeley et al. 2000). The central peak itself can be a simple peak at or near the center of the crater floor, or can be composed of multiple uplift segments.

Morphometry

Central peak diameter and height increase proportionally with crater rim crest diameter (Hale and Head 1979 and references therein). The top of the central peak is generally below the rim and the surrounding terrain (Öhman 2009 and references therein) (Fig. 1), although central peaks in the largest craters can reach and exceed the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CC (1975) Central peaks in lunar craters. Earth Moon Planet 12(4):463–474

    Google Scholar 

  • Baker DMH et al (2011) The transition from complex crater to peak-ring basin on Mercury: new observations from MESSENGER flyby data and constraints on basin-formation models. Planet Space Sci 59(15):1932–1948. doi:10.1016/j.pss.2011.05.010

    Article  Google Scholar 

  • Barlow N (2010) Central pit, central peak, and elliptical craters in the Martian northern hemisphere: new results from the revised catalog of large Martian impact craters. 41st Lunar Planet Sci Conf, abstract #1065, Houston

    Google Scholar 

  • Barnhart CJ, Nimmo F, Travis BJ (2010) Martian post-impact hydrothermal systems incorporating freezing. Icarus 208(1):101–117

    Article  Google Scholar 

  • Beer W, Mädler JH (1837) Der Mond nach seinen kosmischen und individuellen Verhältnissen oder Allgemeine vergleichende Selenographie. Simon Schropp, Berlin

    Google Scholar 

  • Bray VJ, Collins GS, Morgan JV, Schenk PM (2008) The effect of target properties on crater morphology: comparison of central peak craters on the Moon and Ganymede. Meteorit Planet Sci 43(12):1979–1992

    Article  Google Scholar 

  • Dombard AJ, Bray VJ, Collins GS, Schenk PM, Turtle EP (2007) Relaxation and the formation of prominent central peaks in large craters on the icy satellites of Saturn. Bull Am Astron Soc 38:429

    Google Scholar 

  • El-Baz F (1978) Fig 149. In: Masursky H, Colton GW, El-Baz F (eds) Apollo over the moon a view from orbit. Scientific and Technical Information Office, N.A.S.A., Washington, DC

    Google Scholar 

  • French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI contribution no. 954. Lunar and Planetary Institute, Houston, 120 pp

    Google Scholar 

  • Greeley R et al (2000) Galileo views of the geology of Callisto. Planet Space Sci 48:829–853

    Article  Google Scholar 

  • Grieve RAF, Pilkington M (1996) The signature of terrestrial impacts. AGSO J Aust Geol Geophys 16:399–420

    Google Scholar 

  • Hale W, Grieve RAF (1982) Volumetric analysis of complex lunar craters: implications for basin ring formation. Proc Lunar Planet Sci Conf 13th, Pt 1 J Geophys Res 87:A65–A76

    Article  Google Scholar 

  • Hale W, Head JW (1979) Central peaks in lunar craters – morphology and morphometry. Proc Lunar Planet Sci Conf X, vol 3 (A80-23677 08–91). Pergamon Press, New York, pp 2623–2633

    Google Scholar 

  • Hartmann WK, Wood CA (1971) Moon: origin and evolution of multi-ring basins. Moon 3:3–78

    Article  Google Scholar 

  • Herrick RR, Rumpf ME (2011) Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J Geophys Res 116:E02004. doi:10.1029/2010JE003722

    Google Scholar 

  • Herrick RR, Sharpton VL (2000) Implications from stereo-derived topography of Venusian impact craters. J Geophys Res 105(E8):20245–20262

    Article  Google Scholar 

  • Hörz F, Grieve R, Heiken G, Spudis P, Binder A (1991) Lunar surface processes. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook – a user’s guide to the moon. Cambridge University Press/Lunar and Planetary Institute, Houston

    Google Scholar 

  • Kuiper GP (1954) On the origin of the lunar surface features. Proc Natl Acad Sci 40:1096–1112

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geological process. Oxford University Press, New York, 265 p

    Google Scholar 

  • Melosh HJ, Ivanov BA (1999) Impact crater collapse. Annu Rev Earth Planet Sci 27:385–415

    Article  Google Scholar 

  • Öhman T (2009) The structural control of polygonal impact craters. Res Terrae, Ser. A, No. 28. Dissertation, University of Oulu

    Google Scholar 

  • Pike RJ (1980) Control of crater morphology by gravity and target type – Mars, earth, moon. Lunar Planet Sci 11, vol 3 (A82-22351 09–91). Pergamon Press, New York, pp 2159–2189

    Google Scholar 

  • Robbins SJ, Hynek BM (2012) A new global database of Mars impact craters ≥1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter. J Geophys Res 117:E06001

    Google Scholar 

  • Schenk P (1989) Crater formation and modification on the icy satellites of Uranus and Saturn: depth/diameter and central peak occurrence. J Geophys Res 94(B4):3813–3832

    Article  Google Scholar 

  • Schenk P, O’Brien DP, Marchi S, Gaskell R, Preusker F, Roatsch T, Jaumann R, Buczkowski D, McCord T, McSween HY, Williams D, Yingst A, Raymond C, Russell C (2012) The geologically recent giant impact basins at Vesta’s south pole. Suppl Mater Sci 336:694. doi:10.1126/science.1223272

    Google Scholar 

  • Scholten F, Oberst J, Matz K-D, Roatsch T, Wählisch M, Speyerer EJ, Robinson M (2012) GLD100: the near-global lunar 100 m raster DTM from LROC WAC stereo image data. J Geophys Res 117:E00H17. doi:10.1029/2011JE003926

    Google Scholar 

  • Schröter JH (1791), Selenotopographische fragmente (2 vols.), Lilenthal and helmst, Göttingen

    Google Scholar 

  • Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU (2005) What does crater diameter mean? In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. GSA special paper 384. Geological Society of America, Boulder, pp 25–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica J. Bray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Bray, V.J., Öhman, T., Hargitai, H. (2015). Central Peak Crater. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_37

Download citation

Publish with us

Policies and ethics