Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Central Peak Crater

  • Veronica J. Bray
  • Teemu Öhman
  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_37


Complex crater with a single central uplift, a tight cluster of peaks, or a tightly spaced ring-like arrangement of peaks (e.g., Baker et al. 2011).


A type of  complex crater.


The central peak is the simplest interior feature of complex craters. Many central peak craters have scalloped rims, terraced inner walls, and hummocky floors, on both rocky and icy bodies. These are inferred to represent failure by slumping and mass wasting of materials onto the floor (Greeley et al. 2000). The central peak itself can be a simple peak at or near the center of the crater floor, or can be composed of multiple uplift segments.


Central peak diameter and height increase proportionally with crater rim crest diameter (Hale and Head 1979 and references therein). The top of the central peak is generally below the rim and the surrounding terrain (Öhman 2009 and references therein) (Fig. 1), although central peaks in the largest craters can reach and exceed the...
This is a preview of subscription content, log in to check access.


  1. Allen CC (1975) Central peaks in lunar craters. Earth Moon Planet 12(4):463–474Google Scholar
  2. Baker DMH et al (2011) The transition from complex crater to peak-ring basin on Mercury: new observations from MESSENGER flyby data and constraints on basin-formation models. Planet Space Sci 59(15):1932–1948. doi:10.1016/j.pss.2011.05.010CrossRefGoogle Scholar
  3. Barlow N (2010) Central pit, central peak, and elliptical craters in the Martian northern hemisphere: new results from the revised catalog of large Martian impact craters. 41st Lunar Planet Sci Conf, abstract #1065, HoustonGoogle Scholar
  4. Barnhart CJ, Nimmo F, Travis BJ (2010) Martian post-impact hydrothermal systems incorporating freezing. Icarus 208(1):101–117CrossRefGoogle Scholar
  5. Beer W, Mädler JH (1837) Der Mond nach seinen kosmischen und individuellen Verhältnissen oder Allgemeine vergleichende Selenographie. Simon Schropp, BerlinGoogle Scholar
  6. Bray VJ, Collins GS, Morgan JV, Schenk PM (2008) The effect of target properties on crater morphology: comparison of central peak craters on the Moon and Ganymede. Meteorit Planet Sci 43(12):1979–1992CrossRefGoogle Scholar
  7. Dombard AJ, Bray VJ, Collins GS, Schenk PM, Turtle EP (2007) Relaxation and the formation of prominent central peaks in large craters on the icy satellites of Saturn. Bull Am Astron Soc 38:429Google Scholar
  8. El-Baz F (1978) Fig 149. In: Masursky H, Colton GW, El-Baz F (eds) Apollo over the moon a view from orbit. Scientific and Technical Information Office, N.A.S.A., Washington, DCGoogle Scholar
  9. French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI contribution no. 954. Lunar and Planetary Institute, Houston, 120 ppGoogle Scholar
  10. Greeley R et al (2000) Galileo views of the geology of Callisto. Planet Space Sci 48:829–853CrossRefGoogle Scholar
  11. Grieve RAF, Pilkington M (1996) The signature of terrestrial impacts. AGSO J Aust Geol Geophys 16:399–420Google Scholar
  12. Hale W, Grieve RAF (1982) Volumetric analysis of complex lunar craters: implications for basin ring formation. Proc Lunar Planet Sci Conf 13th, Pt 1 J Geophys Res 87:A65–A76CrossRefGoogle Scholar
  13. Hale W, Head JW (1979) Central peaks in lunar craters – morphology and morphometry. Proc Lunar Planet Sci Conf X, vol 3 (A80-23677 08–91). Pergamon Press, New York, pp 2623–2633Google Scholar
  14. Hartmann WK, Wood CA (1971) Moon: origin and evolution of multi-ring basins. Moon 3:3–78CrossRefGoogle Scholar
  15. Herrick RR, Rumpf ME (2011) Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J Geophys Res 116:E02004. doi:10.1029/2010JE003722Google Scholar
  16. Herrick RR, Sharpton VL (2000) Implications from stereo-derived topography of Venusian impact craters. J Geophys Res 105(E8):20245–20262CrossRefGoogle Scholar
  17. Hörz F, Grieve R, Heiken G, Spudis P, Binder A (1991) Lunar surface processes. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook – a user’s guide to the moon. Cambridge University Press/Lunar and Planetary Institute, HoustonGoogle Scholar
  18. Kuiper GP (1954) On the origin of the lunar surface features. Proc Natl Acad Sci 40:1096–1112CrossRefGoogle Scholar
  19. Melosh HJ (1989) Impact cratering: a geological process. Oxford University Press, New York, 265 pGoogle Scholar
  20. Melosh HJ, Ivanov BA (1999) Impact crater collapse. Annu Rev Earth Planet Sci 27:385–415CrossRefGoogle Scholar
  21. Öhman T (2009) The structural control of polygonal impact craters. Res Terrae, Ser. A, No. 28. Dissertation, University of OuluGoogle Scholar
  22. Pike RJ (1980) Control of crater morphology by gravity and target type – Mars, earth, moon. Lunar Planet Sci 11, vol 3 (A82-22351 09–91). Pergamon Press, New York, pp 2159–2189Google Scholar
  23. Robbins SJ, Hynek BM (2012) A new global database of Mars impact craters ≥1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter. J Geophys Res 117:E06001Google Scholar
  24. Schenk P (1989) Crater formation and modification on the icy satellites of Uranus and Saturn: depth/diameter and central peak occurrence. J Geophys Res 94(B4):3813–3832CrossRefGoogle Scholar
  25. Schenk P, O’Brien DP, Marchi S, Gaskell R, Preusker F, Roatsch T, Jaumann R, Buczkowski D, McCord T, McSween HY, Williams D, Yingst A, Raymond C, Russell C (2012) The geologically recent giant impact basins at Vesta’s south pole. Suppl Mater Sci 336:694. doi:10.1126/science.1223272Google Scholar
  26. Scholten F, Oberst J, Matz K-D, Roatsch T, Wählisch M, Speyerer EJ, Robinson M (2012) GLD100: the near-global lunar 100 m raster DTM from LROC WAC stereo image data. J Geophys Res 117:E00H17. doi:10.1029/2011JE003926Google Scholar
  27. Schröter JH (1791), Selenotopographische fragmente (2 vols.), Lilenthal and helmst, GöttingenGoogle Scholar
  28. Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU (2005) What does crater diameter mean? In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. GSA special paper 384. Geological Society of America, Boulder, pp 25–42Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Veronica J. Bray
    • 1
  • Teemu Öhman
    • 2
  • Henrik Hargitai
    • 3
  1. 1.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  2. 2.Arctic Planetary Science InstituteRovaniemiFinland
  3. 3.NASA Ames Research Center/NPPMoffett FieldUSA