Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Smooth Plains

  • David A. Rothery
  • J. Brad DaltonIII
  • Henrik Hargitai
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_356

Definition

Relatively level plains on a planetary surface that have fewer craters (and so are younger than) other plains regions on the same body.

Regional Variations (Description and Interpretation)

Mercury: Flat to gently rolling plains (Trask and Guest 1975) in low depressions (Fig. 1) such as Borealis Planitia and within and surrounding the Caloris Basin, occupying about 40 % of the surface. They were proposed to be volcanic lava flows or alternatively fluidized crater ejecta deposits (Wilhelms 1976; Grolier and Boyce 1984) analogous to the Cayley Formation on the Moon (  light plains), which was wrongly thought to be volcanic until studied in situ by Apollo 16 (Young et al. 1972). There are few recognizable volcanic edifices even at MESSENGER resolution, thus implying flood-volcanism style (Head et al. 2009; Whitten et al. 2012), a contention supported by channels and tear-drop-shaped islands suggestive of sculpting by highly mobile, low-viscosity flows (Head et al. 2011). Some...
This is a preview of subscription content, log in to check access

References

  1. Arvidson RE et al (2011) Opportunity Mars Rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour crater. J Geophys Res 116:E00F15. doi:10.1029/2010JE003746Google Scholar
  2. Buratti BJ, Mosher JA (1991) Comparative global albedo and color maps of the Uranian satellites. Icarus 90:1–13CrossRefGoogle Scholar
  3. Denevi DW, Robinson MS (2008) Mercury’s albedo from Mariner 10: implications for the presence of ferrous iron. Icarus 197:239–246CrossRefGoogle Scholar
  4. Denevi DW, Robinson MS, Solomon SC, Murchie SL, Blewett DT, Domingue DL, McCoy TJ, Ernst CM, Head JW, Watter TR, Chabot NL (2009) The evolution of Mercury’s crust: a global perspective from MESSENGER. Science 324:613–618Google Scholar
  5. Ernst CM, Murchie SL, Barnouin OS, Robinson MS et al (2010) Exposure of spectrally distinct material by impact craters on Mercury: implications for global stratigraphy. Icarus 209(1):210–223CrossRefGoogle Scholar
  6. Fenton LK, Michaels TI, Beyer RA (2012) Aeolian sediment sources and transport in Ganges Chasma, Mars: morphology and atmospheric modeling. 43rd Lunar Planet Sci Conf, abstract #2441, HoustonGoogle Scholar
  7. Fuller ER, Head JW III (2002) Amazonis Planitia: the role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. J Geophys Res 107(E10):5081. doi:10.1029/2002JE001842CrossRefGoogle Scholar
  8. Greeley R, Guest JE (1987) Geologic map of the eastern equatorial region of Mars, U.S. Geol Surv Misc Inv Ser Map I-1802B, scale 1:15MGoogle Scholar
  9. Greeley R et al (2000) Geologic mapping of Europa. J Geophys Res 105(E9):22,559–22,578CrossRefGoogle Scholar
  10. Grolier MJ, Boyce JM (1984) Geologic map of the Borealis Region (H-1) of Mercury. USGS Miscellaneous Investigations Series Map I-1660Google Scholar
  11. Guest JE, Greeley R (1983) Geologic map of the Shakespeare (H-3) Quadrangle of Mercury. USGS, I-1408, 1:5MGoogle Scholar
  12. Head JW III et al (2009) Volcanism on Mercury: evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth Planet Sci Lett 285:227–242CrossRefGoogle Scholar
  13. Head JW III et al (2011) Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 333:1853–1856CrossRefGoogle Scholar
  14. Ivanov MA, Head JW III (2008) Formation and evolution of Lakshmi Planum, Venus: assessment of models using observations from geological mapping. Planet Space Sci 56:1949–1966CrossRefGoogle Scholar
  15. Ivanov MA, Head JW (2011) Global geological map of Venus. Planet Space Sci 59:1559–1600CrossRefGoogle Scholar
  16. Ivanov MA, Head JW (2013) The history of volcanism on Venus. Planet Space Sci 84:66–92CrossRefGoogle Scholar
  17. Jaeger WL, Keszthelyi LP, Skinner JA Jr, Milazzo MP, McEwen AS et al (2010) Emplacement of the youngest flood lava on Mars: a short, turbulent story. Icarus 205:230–243CrossRefGoogle Scholar
  18. Kargel JS (1994) Cryovolcanism on the icy satellites. Earth Moon Planet 67:101–113CrossRefGoogle Scholar
  19. Kirchoff MR, Schenk P (2009) Crater modification and geologic activity in Enceladus’ heavily cratered plains: evidence from the impact crater distribution. Icarus 202:656–668CrossRefGoogle Scholar
  20. Mest SC, Crown DA, Harbert W (2001) Highland drainage basins and valley networks in the eastern Hellas region of Mars. 32th Lunar Planet Sci Conf, abstract #1457, HoustonGoogle Scholar
  21. Milton DJ (1973) Water and processes of degradation in the Martian landscape. J Geophys Res 78(20):4037–4047. doi:10.1029/JB078i020p04037CrossRefGoogle Scholar
  22. Miyamoto H, Yano H, Scheeres DJ, Abe S, Barnouin-Jha O et al (2007) Regolith migration and sorting on asteroid Itokawa. Science 316:1011–1014CrossRefGoogle Scholar
  23. Miyamoto H, Kargel JS, Fink W, Furfaro R (2008) Granular processes on Itokawa, a small near-Earth asteroid: implications for resource utilization. Proc SPIE 6960, Space exploration technologies, 69600I. doi:10.1117/12.784634Google Scholar
  24. Moore JM (1984) The tectonic and volcanic history of Dione. Icarus 59:205–220CrossRefGoogle Scholar
  25. Nittler LR et al (2011) The major element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333:1847–1850CrossRefGoogle Scholar
  26. Passey QR (1983) Viscosity of the lithosphere of Enceladus. Icarus 53:105–120CrossRefGoogle Scholar
  27. Plescia JB, Boyce JM (1982) Crater intensities and geologic histories of Rhea, Dione, Mimas and Tethys. Nature 295:285–290CrossRefGoogle Scholar
  28. Prockter L, Schenk PM (2005) Origin and evolution of Castalia Macula, an anomalous young depression on Europa. Icarus 177:305–326CrossRefGoogle Scholar
  29. Strom RG, Croft SK, Boyce JM (1990) The impact cratering record on Triton. Science 250:437–439CrossRefGoogle Scholar
  30. Thomas PC, Burns JA, Hedman M, Helfenstein P, Morrison S, Tiscareno MS, Veverka J (2013) The inner small satellites of Saturn: a variety of worlds. Icarus 226(1):999–1019CrossRefGoogle Scholar
  31. Thomas N et al. (2015) The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science 347(6220), doi: 10.1126/science.aaa0440Google Scholar
  32. Trask NJ, Guest JE (1975) Preliminary geologic terrain map of Mercury. J Geophys Res 80:2461–2477CrossRefGoogle Scholar
  33. Whitten JL, Head JW, Murchie SL, Blewett DT et al (2012) Intercrater plains on Mercury: topographic assessment with messenger data. 43rd Lunar Planet Sci Conf, abstract #1479, HoustonGoogle Scholar
  34. Weider SZ, Nittler LR, Starr RD, McCoy TJ, Stockshill-Cahill KR, Byrne PK, Denevi BW, Head JW, Solomon SC (2012) Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray spectrometer. J Geophys Res 117:E00L05. doi:10.1029/2012JE004153Google Scholar
  35. Wilhelms DE (1976) Mercurian volcanism questioned. Icarus 28:551–558CrossRefGoogle Scholar
  36. Young, JW, Mattingley, TK Duke CM (1972) Crew observations. Apollo 16 preliminary science report, special publication SP-315, NASA, Washington, DC, pp 5-1–5-6Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • David A. Rothery
    • 1
  • J. Brad DaltonIII
    • 2
  • Henrik Hargitai
    • 3
  1. 1.Department of Physical SciencesOpen UniversityMilton KeynesUK
  2. 2.Planetary Ices Group, NASA-Jet Propulsion LaboratoryPasadenaUSA
  3. 3.NASA Ames Research Center/NPPMoffett FieldUSA