Skip to main content

Simple Crater

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

A simple crater is a bowl-shaped depression produced by an impact.

Description

Simple craters are polygonal to circular bowl-shaped depressions with smooth to ragged raised rims surrounded by a blanket of continuous ejecta. Simple craters range in size from centimeters to tens of kilometers, where the maximum size is inversely related to planetary mass. Simple craters are characterized by a uniformly concave-upward shape with an approximately conical to parabolic interior profile (Figs. 1 and 2). Simple craters can exhibit a bench-like step in the walls or a central mound if formed in a surface with layers of varying strength (nested crater, concentric crater (Moon)). Otherwise, they exhibit few other internal topographic features with the exception of slump deposits, debris chutes, gullies, or sporadic boulder trails. The crater may have a central flat floor of crater-fill deposit that originates from mass wasting and eolian or fluvial infilling or ponding of impact melt (t...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beer W, Mädler JH (1837) Der Mond nach seinen kosmischen und individuellen Verhältnissen oder Allgemeine vergleichende Selenographie. Simon Schropp, Berlin

    Google Scholar 

  • Bottke WF, Love SG, Tytell D, Glotch T (2000) Interpreting the elliptical crater populations on Mars, Venus, and the Moon. Icarus 145:108–121

    Article  Google Scholar 

  • Dence MR (1964) A comparative structural and petrographic study of probable Canadian meteorite craters. Meteoritics 2(3):249

    Article  Google Scholar 

  • Florensky CP, Basilevsky AT, Grebennik NN (1976) The relationship between Lunar crater morphology and crater size. Moon 16:59–70

    Article  Google Scholar 

  • French BM (1998) Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures. LPI contribution no. 954. Lunar and Planetary Institute, Houston, 120 pp

    Google Scholar 

  • Garvin JB, Robinson MS, Frawley J, Tran T, Mazarico E, Neumann G (2011) Linne: simple Lunar mare crater geometry from LRO observations. 42nd Lunar Planet Sci Conf, abstract #2063, Houston

    Google Scholar 

  • Grant JA (1999) Evaluating the evolution of process specific degradation signatures around impact craters. Int J Impact Eng 23:331–340

    Article  Google Scholar 

  • Grieve RAF, Robertson PB, Dence MR (1981) Constraints on the formation of ring impact structures, based on terrestrial data. In: Schultz PH, Merrill RD (eds) Multi-ring basins: formation and evolution. Proc Lunar Planet Sci Conf 12A, LPI:37–57, Houston

    Google Scholar 

  • Holliday VT, Kring DA, Mayer JH, Goble RJ (2005) Age and effects of the Odessa meteorite impact, western Texas, USA. Geology 33(12):945–948. doi:10.1130/G21884.1; 1

    Article  Google Scholar 

  • Holsapple KA (1993) The scaling of impact processes in planetary sciences. Annu Rev Earth Planet Sci 21:333–373

    Article  Google Scholar 

  • Holsapple KA, Schmidt RM (1979) A material-strength model for apparent crater volume. In: Proceedings 10th Lunar and planetary science conference, 3. Pergamon Press, New York

    Google Scholar 

  • Housen KR, Holsappe KA, Voss ME (1999) Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature 402:155–157

    Article  Google Scholar 

  • Koeberl C, Anderson RR (1996) Manson and company: impact structures in the United States. In: Koeberl C, Anderson RR (eds) The Manson impact structure, Iowa: anatomy of an impact crater. Geological Society of America special paper 302. Geological Society of America, Boulder, p 468

    Google Scholar 

  • Melosh HJ (1989) Impact Cratering: A Geologic Process. New York: Oxford Univ Press

    Google Scholar 

  • Melosh HJ, Ivanov BA (1999) Impact crater collapse. Annu Rev Earth Planet Sci 27:385–415

    Article  Google Scholar 

  • Neison E (1876) The Moon and the condition and configuration of its surface. Longmans, Green and Co, London

    Google Scholar 

  • Osinski GR, Pierazzo E (2013) Impact cratering: processes and products. Wiley-Blackwell, Chichester, pp 3–8

    Google Scholar 

  • Pike RJ (1977) Size-dependence in the shape of fresh impact craters on the moon. In: Roddy DJ, Pepin RO, Merrill RB (eds) Impact and explosion cratering. Pergamon Press, New York, pp 489–509

    Google Scholar 

  • Pike RJ (1980) Control of crater morphology by gravity and target type – Mars, earth, moon. Lunar Planet Sci Conf XI:2159–2189, Houston

    Google Scholar 

  • Quaide WL, Gault DE, Schmidt RA (1965) Gravitative effects on lunar impact structures. Ann N Y Acad Sci 123:563–572

    Article  Google Scholar 

  • Schröter JH (1791) Selenotopographische Fragmente. CG Fleckeinsen, Lilenthal

    Google Scholar 

  • Shoemaker EM (1960) Penetration mechanics of high velocity meteorites, illustrated by Meteor Crater, Arizona. Int’l Geological Congress 21, 52(4-5):529–544

    Google Scholar 

  • Shoemaker EM, Eggleton RE (1961) Terrestrial features of impact origin. In: Proceedings of the geophysical laboratory/Lawrence radiation laboratory cratering symposium 1, Washington, DC, University of California, Livermore, Report UCRL-6438, Paper A, 27 p

    Google Scholar 

  • Shoemaker EM, MacDonald FA, Shoemaker CS (2005) Geology of five small Australian impact craters. Aust J Earth Sci 52:529–544

    Article  Google Scholar 

  • Short NM (1965) A comparison of features characteristic of nuclear explosion craters and astroblemes. N Y Acad Sci Ann 123:573–616

    Article  Google Scholar 

  • Squytes SW, Carr MH (1986) Geomorphic evidence for the distribution of ground ice on Mars. Science 231:249–252. doi:10.1126/science.231.4735.249

    Article  Google Scholar 

  • Stewart ST, Valiant GJ (2006) Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries. Meteorit Planet Sci 41(10):1509–1537

    Article  Google Scholar 

  • Taylor SR (1982) Planetary science: a Lunar perspective. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU (2005) What does crater diameter mean? In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. GSA special paper 384. Geological Society of America, Boulder, pp 25–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Hargitai, H., Watters, W.A. (2015). Simple Crater. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_348

Download citation

Publish with us

Policies and ethics