Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi


  • Jessica WatkinsEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_343


Slide is a broad term that can include (and has been applied toward) landslides, slumps, avalanches ( rock avalanche,  fall), debris flows ( flow), and other features formed through the destabilization of a slope and movement due to gravity of a coherent or semi-coherent body of rock or soil along a surface of rupture.


A type of  mass wasting

Related Terms

Sturzstrom, Avalanche, Slump, Long-runout landslide.


Classifications of slides are associated with specific mechanics and properties of slope failure and the material involved. These properties will determine the potential speed of movement, volume of displacement, and runout distance of the landslide (e.g., Hewitt et al. 2008; Iverson 1997, 2006). The volume of displaced material enlarges from an initial area of local failure (Highland and Bobrowsky 2008). The buildup of preconditional factors that make a slope prone to failure can occur over long timescales, with a “trigger” causing the actual slide...

This is a preview of subscription content, log in to check access.


  1. Bagnold RA (1956) The flow of cohesionless grains in fluids. Philos Trans R Soc London Ser A 225:49–63CrossRefGoogle Scholar
  2. Bart GD (2007) Comparison of small lunar landslides and Martian gullies. Icarus 187(2):417–421. doi:10.1016/j.icarus.2006.11.004CrossRefGoogle Scholar
  3. Bulmer MH, Guest JE (1996) Modified volcanic domes and associated debris aprons on Venus. Geol Soc Lond Special Publ 110(1):349–371CrossRefGoogle Scholar
  4. Bulmer MH, Zimmermann BA (2004) New evidence for the formation of large landslides on Mars. Lunar Planet Sci Conf XXXV, abstract #1270, HoustonGoogle Scholar
  5. Chuang FC, Greeley R (2000) Large mass movements on Callisto. J Geophys Res 105(E8):20,227–20,244. doi:10.1029/2000JE001249CrossRefGoogle Scholar
  6. Collins GS, Melosh HJ (2003) Acoustic fluidization and the extraordinary mobility of sturzstroms. J Geophys Res 108:2473. doi:10.1029/2003JB002465CrossRefGoogle Scholar
  7. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AT, Schuster RL (eds) Landslides – investigation and mitigation. Transportation research board special report no. 247. National Academy Press, Washington, DC, pp 36–75Google Scholar
  8. Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109:67–79CrossRefGoogle Scholar
  9. De Blasio FV (2011) The aureole of Olympus Mons (Mars) as the compound deposit of submarine landslides. Earth Planet Sci Lett 312(1–2):126–139. doi:10.1016/j.epsl.2011.09.019CrossRefGoogle Scholar
  10. Erismann TH (1979) Mechanics of large landslides. Rock Mech 12:15–46CrossRefGoogle Scholar
  11. Goguel J (1978) Scale-dependent rockslide mechanisms, with emphasis on the role of pore fluid vaporization. In: Voight B (ed) Rockslides and avalanches, vol 1. Elsevier Science, New York, pp 693–705CrossRefGoogle Scholar
  12. Harrison K, Grimm R (2003) Rheological constraints on Martian landslides. Icarus 163:347–362CrossRefGoogle Scholar
  13. Heim A (1882) Der bergsturz von elm. Z Dtsch Geol Ges 34:74–115Google Scholar
  14. Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth-Sci Rev 87:1–38. doi:10.1016/j.earscirev.2007.10.002CrossRefGoogle Scholar
  15. Highland LM, Bobrowsky P (2008) The landslide handbook – a guide to understanding landslides. USGS circular 1325, RestonGoogle Scholar
  16. Howard KA (1973) Avalanche mode of motion: implications from lunar examples. Science 180:1052–1055CrossRefGoogle Scholar
  17. Hsü KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140CrossRefGoogle Scholar
  18. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116:1240–1252CrossRefGoogle Scholar
  19. Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci VII:221–238CrossRefGoogle Scholar
  20. Hutchinson JN (1988) Morphology and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Proceedings of 5th international symposium on landslides, Lausanne. Balkema, Rotterdam, pp 3–35Google Scholar
  21. Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296CrossRefGoogle Scholar
  22. Iverson RM (2006) Forecasting runout of rock and debris avalanches. In: Evans SG et al. (ed) Proceedings of the NATO Advanced Research Workshop on Massive Rock Slope Failure: New Models for Hazard Assessment. Landslides from massive rock slope failure. Celano, Italy, pp 197–209CrossRefGoogle Scholar
  23. Lajeunesse E, Quantin C, Allemand P, Delacourt C (2006) New insights on the runout of large landslides in the Valles Marineris canyons, Mars. Geophys Res Lett 33:L04403. doi:10.1029/2005GL025168CrossRefGoogle Scholar
  24. Lucas A, Mangeney A (2007) Mobility and topographic effects for large Valles Marineris landslides on Mars. Geophys Res Lett 34:L10201. doi:10.1029/2007GL029835CrossRefGoogle Scholar
  25. Lucchitta BK (1978) A large landslide on Mars. GSA Bull 89:1601–1609CrossRefGoogle Scholar
  26. Lucchitta BK (1979) Landslides in Valles Marineris, Mars. J Geophys Res 84(B14):8097CrossRefGoogle Scholar
  27. Malin MC (1992) Mass movements on Venus: preliminary results from Magellan cycle 1 observations. J Geophys Res 97:16337–16352CrossRefGoogle Scholar
  28. McEwen AS (1989) Mobility of large rock avalanches: evidence from Valles Marineris, Mars. Geology 17(12):1111–1114CrossRefGoogle Scholar
  29. McGovern PJ, Smith JR, Morgan JK, Bulmer MH (2004) Olympus Mons aureole deposits: new evidence for a flank failure origin. J Geophys Res 109:E08008. doi:http://dx.doi.org/10.1029/2004JE002258
  30. McKinnon WB, Singer KN, Schenk PM, Moore JM (2012) Massive ice avalanches on Iapetus, and the mechanism of friction reduction in long-runout landslides. 43rd Lunar Planet Sci Conf, abstract #2823, HoustonGoogle Scholar
  31. Melosh HJ (1979) Acoustic fluidization: a new geologic process? J Geophys Res 84:7513–7520CrossRefGoogle Scholar
  32. Miyamoto H, Yano H, Scheeres DJ, Abe S, Barnouin-Jha O et al (2007) Regolith migration and sorting on Asteroid Itokawa. Science 316(5827):1011CrossRefGoogle Scholar
  33. Moore JM, Asphaug E, Morrison D, Spencer JR et al (1999) Mass movement and landform degradation on the Icy Galilean Satellites: results of the Galileo Nominal Mission. Icarus 140:294–312Google Scholar
  34. Moore JM, Chapman CR, Bierhaus EB, Greeley R, Chuang FC et al (2004) Callisto. In: Fran Bagenal, Timothy Dowling, and William McKinnon (eds) Jupiter. The planet, satellites and magnetosphere. Cambridge University Press, Cambridge, UK, vol 1. pp 397–426Google Scholar
  35. Nycz JC, Hildebrand AR (2005) The peripheral peak ring: a complex impact crater morphologic feature probably related to crater rim collapse. Lunar Planet Sci Conf XXXVI, abstract #2167, HoustonGoogle Scholar
  36. Pike RJ (1988) Geomorphology of impact craters on Mercury. In: Mercury. University of Arizona Press, Tucson, pp 165–273Google Scholar
  37. Quantin C, Allemand P, Delacourt C (2004) Morphology and geometry of Valles Marineris landslides. Planet Space Sci 52:1011–1022CrossRefGoogle Scholar
  38. Schenk PM, Bulmer MH (1998) Origin of mountains on Io by thrust faulting and large-scale mass movements. Science 279(5356):1514–1517CrossRefGoogle Scholar
  39. Shingareva TV, Kuzmin RO (2001) Downslope movement of surface material on phobos. Lunar Planet Sci Conf XXXII, abstract #1453, HoustonGoogle Scholar
  40. Shreve RL (1959) Geology and mechanics of the Blackhawk landslide, Lucerne Valley, California. Dissertation (PhD), California Institute of TechnologyGoogle Scholar
  41. Shreve RL (1968) The Blackhawk landslide. Spec Pap Geol Soc Am 108:47Google Scholar
  42. Singer KN, McKinnon WB, Schenk PM, Moore JM (2012) Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating. Nat Geosci 5(8):574–578CrossRefGoogle Scholar
  43. Turtle EP, Keszthelyi LP, McEwen AS, Radebaugh J et al (2004) The final Galileo SSI observations of Io: orbits G28-I33. Icarus 169:3–28CrossRefGoogle Scholar
  44. Varnes DJ, The International Association Engineering Geology Commission on Landslides Other Mass Movements on Slopes (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, ParisGoogle Scholar
  45. WPWLI (International Geotechnical Societies = UNESCO Working Party on World Landslide Inventory) (1993) Multilingual landslide glossary. BiTech Publishers, RichmondGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesUSA