Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Scalloped Terrain

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_338

Definition

In strict sense, it is terrain displaying rimless elongated to circular scalloped-shape depressions resulting from the degradation of ground ice (Costard and Kargel 1995).

Category

A type of  periglacial landform formed by the degradation of ground ice ( thermokarst landforms).

Synonyms

 Alas-like depression; Scallop (not recommended); Scalloped depression;  Thermokarst depression

Description

Scalloped depressions generally have circular to elliptical shapes with diameters ranging from tens of meters to several kilometers and depths extending to several tens of meters (Figs. 1 and 2; Costard and Kargel 1995; Plescia 2003; Morgenstern et al. 2007; Soare et al. 2007). They are flat floored with no raised rims and are characterized by a NS asymmetric profile; their pole-facing slopes are steeper (5–20°) than their equator-facing slopes (2–5°) (Figs. 1b and 2b; Morgenstern et al. 2007; Soare et al. 2007; Lefort et al. 2009, 2010; Ulrich et al. 2010; Zanetti et al. 2010;...
This is a preview of subscription content, log in to check access.

References

  1. ACGR (1988) Glossary of permafrost and related ground-ice terms. Vol. Cat. No. NRCC 27952 of ISBN 0660125404. Sous-comité du pergélisol du Canada, Conseil national de recherches du Canada, Ottawa (Traduction Française: M. Verge et La Brie) Permafrost Subcommittee, National Research Council of Canada, OttawaGoogle Scholar
  2. Costard FM, Kargel JS (1995) Outwash plains and thermokarst on mars. Icarus 114:93–112. doi:10.1006/icar.1995.1046CrossRefGoogle Scholar
  3. Costard F, Forget F, Mangold N, Peulvast JP (2002) Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science 295(5552):110–113CrossRefGoogle Scholar
  4. French HM (2007) The periglacial environment, 3rd edn. Wiley, Chichester, 458pCrossRefGoogle Scholar
  5. Head JW, Mustard JF, Kreslavsky MA, Milliken RE, Marchant DR (2003) Recent ice ages on Mars. Nature 426:797–802CrossRefGoogle Scholar
  6. Kaufman DS et al (2004) Holocene thermal maximum in the western Arctic (0–180°W). Quat Sci Rev 23(5–6):529–560CrossRefGoogle Scholar
  7. Kreslavsky MA, Head JW (2002) Mars: nature and evolution of young latitude-dependent water–ice-rich mantle. Geophys Res Lett 29(15):1719 doi:10.1029/2002GL015392Google Scholar
  8. Laskar J, Correia, ACM, Gastineau M, Joutel F, Levrard B, Robutel P (2004) Long term evolution and chaotic diffusion of the insolation quantities of mars. Icarus 170(2):343–364CrossRefGoogle Scholar
  9. Lefort A, Russell PS, Thomas N, McEwen AS, Dundas CM, Kirk RL (2009) Observations of periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). J Geophys Res 114, E04005. doi:10.1029/2008JE003264Google Scholar
  10. Lefort A, Russell PS, Thomas N (2010) Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE. Icarus 205:259–268CrossRefGoogle Scholar
  11. Mackay JR (1956) Notes on oriented lakes of the Liverpool bay area, Northwest Territories. Rev Can Géogr 10:169–173Google Scholar
  12. Morgenstern A, Hauber E, Reiss D, van Gasselt S, Grosse G, Schirrmeister L (2007) Deposition and degradation of a volatile-rich layer in Utopia Planitia, and implications for climate history on Mars. J Geophys Res 112(E6), E06010Google Scholar
  13. Mustard JF, Cooper CD, Rifkin MK (2001) Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412:411–414CrossRefGoogle Scholar
  14. Plescia JB (2003) Amphitrites-Peneus Paterae/Malea Planum geology. Lunar Planet Sci Conf XXXIV:1478, HoustonGoogle Scholar
  15. Séjourné A, Costard F, Gargani J, Marmo C, Forget F, Madeleine J-B, Soare RJ (2009) Periglacial processes in Utopia Planitia, evolution of scalloped terrains: new insights from HiRISE observations. Lunar Planet Sci Conf 40:1733, HoustonGoogle Scholar
  16. Séjourné A, Costard F, Gargani J, Soare RJ, Fedorov A, Marmo C (2011) Scalloped depressions and small-sized polygons in western Utopia Planitia, Mars: a new formation hypothesis. Planet Space Sci 59:412–422CrossRefGoogle Scholar
  17. Séjourné A, Costard F, Gargani J, Soare RJ, Marmo C (2012a) Evidence of an eolian ice-rich and stratified permafrost in Utopia Planitia, Mars. Planet Space Sci 60:248–254CrossRefGoogle Scholar
  18. Séjourné A, Costard F, Gargani J, Fedorov A, Soare RJ, Marmo C (2012b) Degradation of the periglacial landscape of Utopia Planitia under global warming: comparison Earth-Mars. Lunar Planet Sci Conf 42, abstract #1881, HoustonGoogle Scholar
  19. Soare RJ, Burr DM, Wan Bun Tseung JM (2005) Possible pingos and a periglacial landscape in northwest utopia planitia. Icarus 174(2):373–382CrossRefGoogle Scholar
  20. Soare RJ, Kargel JS, Osinski GR, Costard F (2007) Thermokarst processes and the origin of crater-rim gullies in Utopia and western Elysium Planitia. Icarus 191:95–112. doi:10.1016/j.icarus.2007.04.018CrossRefGoogle Scholar
  21. Soare RJ, Osinski GR, Roehm CL (2008) Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past. Earth Planet Sci L 272(1–2):382–393CrossRefGoogle Scholar
  22. Soare RJ, Séjourné A, Pearce GD, Costard F, Osinski GR (2011) The Tuktoyaktuk coastlands of northern Canada: a possible wet periglacial analogue of Utopia Planitia, mars. Geol Soc Am Spec Pap 483:203–218Google Scholar
  23. Soloviev PA (1973) Thermokarst phenomena and landforms due to frost heaving in Central Yakutia. Biuletyn Peryglacjalny 23:135–155Google Scholar
  24. Ulrich MA, Morgenstern F, Günther RD, Bauch KE, Hauber E, Rössler S, Schirrmeister L (2010) Thermokarst in Siberian ice-rich permafrost: comparison to asymmetric scalloped depressions on Mars. J Geophys Res 115, E10009CrossRefGoogle Scholar
  25. Ulrich M, Hauber E, Herzschuch U, Härtel S, Schirrmeister L (2011) Polygon pattern geomorphometry on Svalbard (Norway) and western Utopia Planitia (Mars) using high-resolution stereo remote-sensing data. Geomorphology 134:197–216CrossRefGoogle Scholar
  26. Wanner H et al (2008) Mid to late Holocene climate change: an overview. Quat Sci Rev 27(19–20):1791–1828CrossRefGoogle Scholar
  27. Zanetti M, Hiesinger H, Reiss D, Hauber E, Neukum G (2010) Distribution and evolution of scalloped terrain in the southern hemisphere, Mars. Icarus 206:691–706CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.UMR8148GEOPS, Univ Paris-Sud, CNRSOrsayFrance
  2. 2.Department of Earth and Planetary SciencesThe University of TennesseeKnoxvilleUSA