Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Dune-Field Patterns (Aeolian)

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_165


Dune-field patterns are autogenic complex systems of aeolian deposits (Kocurek and Ewing 2005).


A type of  aeolian sand deposit; a type of  erg.


Dunescape type (Baas 2007)


Dune-field patterns emerge from a non-patterned state through self-organization within complex systems. This pattern is more complex than the predictable cumulative sum of individual dunes (Kocurek and Ewing 2005). Dune-field patterns can be arranged in a hierarchy of forms (Bishop 2010).


Subtypes by Origin

  1. (a)

    Simple pattern: a single pattern of dunes, representing a single generation of dune-field construction (Kocurek and Ewing 2005). A simple pattern may change spatially into another simple pattern.

  2. (b)

    Complex pattern: multiple patterns (of differing sizes, trends, and ages) that are spatially superimposed (Kocurek and Ewing 2005) (Fig. 1).

This is a preview of subscription content, log in to check access.


  1. Allen JRL (1978) Polymodal dune assemblages: an interpretation in terms of dune creation – destruction in periodic flows. Sed Geol 20:17–28CrossRefGoogle Scholar
  2. Allen JRL, Collinson JD (1974) The superimposition and classification of dunes formed by unidirectional aqueous flows. Sed Geol 12:169–178CrossRefGoogle Scholar
  3. Baas ACW (2007) Complex systems in aeolian geomorphology. Geomorphology 91:311–331CrossRefGoogle Scholar
  4. Beydoun ZR (1966) Geology of the Arabian Peninsula. Geological Survey Professional paper 560-H. US Government Printing Office, Washington, DCGoogle Scholar
  5. Bishop MA (2010) Nearest neighbor analysis of mega-barchanoid dunes, Ar Rub’ al Khali, sand sea: the application of geographical indices to the understanding of dunefield self-organization, maturity and environmental change. Geomorphology 120:186–194CrossRefGoogle Scholar
  6. Bishop SR, Momiji H, Carretero-González R, Warren A (2002) Modelling desert dune fields based on discrete dynamics. Discret Dyn Nat Soc 7(1):7–17CrossRefGoogle Scholar
  7. Bourke MC (2006) A new model for linear dune formation: merged barchan convoys on Mars. Lunar Planet Sci XXXVI:2432Google Scholar
  8. Bridges NT, Geissler PE, McEwen AS, Thomson BJ, Chuang FC, Herkenhoff KE, Keszthelyi LP, Martinez-Alonso S (2007) Windy Mars: a dynamic planet as seen by the HiRISE camera. Geophys Res Lett 34:L23205. doi:10.1029/2007GL031445CrossRefGoogle Scholar
  9. Derickson D, Kocurek G, Ewing RC, Bristow C (2008) Origin of a complex and spatially diverse dune-field pattern, Algodones, Southeastern California. Geomorphology 99(1–4):186–204CrossRefGoogle Scholar
  10. Durán O, Schwämmle V, Herrmann HJ (2005) Breeding and solitary wave behavior of dunes. Phys RevE Stat Nonlinear Soft Matter Phys 72:1–5Google Scholar
  11. Durán O, Schwämmle V, Lind PG, Herrmann HJ (2009) The dune size distribution and scaling relations of barchan dune fields. Granul Matter 11(1):7–11CrossRefGoogle Scholar
  12. Durán O, Schwämmle V, Lind PG, Herrmann HJ (2013) Size distribution and structure of barchan dune fields. Nonlinear Process Geophys 18:455–467. doi:10.5194/npg-18-455-2011Google Scholar
  13. Edgell HS (2006) Arabian deserts. Springer Dordrecht, The Netherlands, p 583Google Scholar
  14. El-Baz F (1976) Terrestrial sand patterns photographed by the Apollo-Soyuz Mission and similar features on Mars. Lunar science VII. Lunar Science Institute, Houston, pp 236–238Google Scholar
  15. Elbelrhiti H, Andreotti B, Claudin P (2008) Barchan dune corridors: field characterization and investigation of control parameters. J Geophys Res 113:F02S15. doi:10.1029/2007JF000767Google Scholar
  16. Elbelrhtiti H, Claudin P, Andreotti B (2005) Field evidence for surface-wave-induced instability of sand dunes. Nature 437:720–723. doi:10.1038/nature04058CrossRefGoogle Scholar
  17. Endo N, Taniguchi K, Katsuki A (2004) Observation of the whole process of interaction between barchans by flume experiments. Geophys Res Lett 31:12503CrossRefGoogle Scholar
  18. Ewing RC, Kocurek G (2010) Aeolian dune-field pattern boundary conditions. Geomorphology 114:175–187CrossRefGoogle Scholar
  19. Ewing RC, Peyret APB, Kocurek G, Bourke M (2010) Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, North Polar Region of Mars. J Geophys Res 115, E08005. doi:10.1029/2009JE003526Google Scholar
  20. Ewing RC, Hayes AG, Lucas A (2013) Reorientation time-scales of Titan’s equatorial dunes. 44th Lunar Planet Sci Conf, abstract #1187, HoustonGoogle Scholar
  21. Fenton LK, Hayward RK (2010) Southern high latitude dune fields on Mars: morphology, aeolian inactivity, and climate change. Geomorphology 121(1–2):98–121. doi:10.1016/j.geomorph.2009.11.006CrossRefGoogle Scholar
  22. Génois M, Hersen P, Courrech du Pont S, Grégorie G (2012) When dunes move together, structure of deserts emerges. arXiv:1211.7238 [physics.geo-ph]Google Scholar
  23. Glenn M (ed) (1979) Glossary. In: McKee ED (ed) A study of global sand seas. U.S. Geological Survey Professional Paper, 1052, pp 399–407Google Scholar
  24. Hayward RK, Mullins KF, Fenton LK, Hare TM, Titus TN, Bourke MC, Colaprete A, Christensen PR (2007) Mars global digital dune database and initial science results. J Geophys Res 112:E11007. doi:10.1029/2007JE002943CrossRefGoogle Scholar
  25. Hersen P, Andersen KH, Elbelrhiti H, Andreotti B, Claudin P, Douady S (2004) Corridors of barchan dunes: stability and size selection. Phys Rev E Stat Nonlinear Soft Matter Phys 69(1):011304CrossRefGoogle Scholar
  26. Hersen P, Douady S (2005) Collision of barchan dunes as a mechanism of size regulation. Geophys Res Lett 32:L21403. doi:10.1029/2005GL024179CrossRefGoogle Scholar
  27. Hugenholtz CH, Levin N, Barchyn TE, Baddock MC (2012) Remote sensing and spatial analysis of aeolian sand dunes: a review and outlook. Earth Sci Rev 111:319–334CrossRefGoogle Scholar
  28. Kerber L, Head JW (2012) A progression of induration in Medusae Fossae Formation transverse aeolian ridges: evidence for ancient aeolian bedforms and extensive reworking. Earth Surf Process Landf 37:422–433CrossRefGoogle Scholar
  29. Kocurek G, Ewing RC (2005) Aeolian dune field self-organization: implications for the formation of simple versus complex dune-field patterns. Geomorphology 72(1–4):94–105CrossRefGoogle Scholar
  30. Lancaster N (1995) Geomorphology of desert dunes. Routledge, New YorkCrossRefGoogle Scholar
  31. Mashadi N, Ahmadi H, Ekhtesasi MR, Feiznia S, Feghhi G (2007) Analysis of sand dunes to determine wind direction and detect sand source sites (case study: Khartooran Erg, Iran). BIABAN (Desert J) 12:69–75Google Scholar
  32. Maxwell TA, Haynes CV Jr (1989) Large-scale, low-amplitude beforms (Chevrons) in the selima sand sheet, Egypt. Science 243:1179–1182CrossRefGoogle Scholar
  33. McKee ED, Breed CS, Fryberger S, Gebel D, McCauley C (1974) A synthesis of sand seas throughout the world. Final report. U.S. Geological Survey – Goddard Space Flight Center Greenbelt, MarylandGoogle Scholar
  34. Pinter N, Ishman SE (2008) Impacts, mega-tsunami, and other extraordinary claims. GSA Today 18(1):37–38. doi:10.1130/GSAT01801GW.1CrossRefGoogle Scholar
  35. Savage CJ, Radebaugh J (2011) Parameter analysis of Titan’s dunes reveals surface evolution history. 42nd Lunar Planet Sci Conf, abstract #2261, Houston [see also Savage, CJ, Radebaugh J, Christensen EH, Lorenz RD (in press) Implications of dune pattern analysis for Titan’s surface history, Icarus, available online 13 Sept 2013]Google Scholar
  36. Schwämmle V, Herrmann H (2003) Solitary wave behaviour of sand dunes. Nature 426:619–620. doi:10.1038/426619aCrossRefGoogle Scholar
  37. Thomas D (1989) Arid zone geomorphology. Belhaven, London, pp 232–261Google Scholar
  38. Tirsch D (2008) Analyses on origin, morphology, and mineralogical composition of the dark material in Martian craters. Thesis, Freien Universität BerlinGoogle Scholar
  39. Worman S, Murray AB, Littlewood R, Andreotti B, Claudin P (2013) Modeling emergent large-scale structures of barchan dune fields. Geology G34482:1. doi:10.1130/G34482.1Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA