Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi


  • Marco Cardinale
  • Henrik Hargitai
  • Kathryn E. Fitzsimmons
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_163


A dune is an aeolian or subaqueous landform created from the movement of sand-sized grains of unconsolidated sediments by wind or current action. An aeolian dune is a hill, mound, or ridge of sand or other loose material, such as aggregated clay particles (as in lunettes). A subaqueous dune is a water-formed bedform >0.6 m in wavelength.


A type of  bedform.


  1. (1)

    Stoss side (backslope/the windward side/upwind side/luv side, facing dominant wind direction and direction from which dune has migrated). This side is dominated by erosion (Fig. 1).

  2. (2)

    Crest. A dune summit; it is the highest natural projection of a dune. Flow separation often occurs near the crest of the dune (Thomas 1989 and references therein).

  3. (3)
    Lee side. It is the sheltered side, turned away from the wind. All dunes have a lee side.
    1. (3.1)

      Brink. The top of the slip face of a dune on the lee side. It may correspond to the crest. Dune brinks may be crisp (typical for active dunes),...

This is a preview of subscription content, log in to check access.


  1. Aben LK (2003) Compositional and thermophysical analysis of Martian aeolian dunes. Master of Science thesis, Arizona State University, TempeGoogle Scholar
  2. Allen JRL, Collinson JD (1974) The superimposition and classification of dunes formed by unidirectional aqueous flows. Sediment Geol 12:169–178CrossRefGoogle Scholar
  3. Amos CL, King EL (1984) Bedforms of the Canadian eastern seaboard: a comparison with global occurrences. Mar Geol 57:167–208CrossRefGoogle Scholar
  4. Andreotti B, Fourriere A, Ould-Kaddour F, Murray B, Claudin P (2009) Size of giant aeolian dunes limited by the average depth of the atmospheric boundary layer. Nature 457:1120–1123CrossRefGoogle Scholar
  5. Araújo AD, Parteli EJR, Pöschel T, Andrade JS, Herrmann HJ (2013) Numerical modeling of the wind flow over a transverse dune. Scientific Reports 3, Article number: 2858. doi:10.1038/srep02858Google Scholar
  6. Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem-SEPM bedforms and bedding structures. J Sediment Petrol 60(1):160–172CrossRefGoogle Scholar
  7. Bagnold RA (1941) The physics of brown sand and desert dunes. Methuen, LondonGoogle Scholar
  8. Baker VR (2009) The channeled scabland: a retrospective. Annu Rev Earth Planet Sci 37:6.1–6.19CrossRefGoogle Scholar
  9. Belcher D, Veverka J, Sagan C (1971) Mariner photography of Mars and aerial photography of Earth: some analogies. Icarus 15:241–252CrossRefGoogle Scholar
  10. Best J (2005) The fluid dynamics of river dunes: a review and some future research directions. J Geophys Res 110:F04S02. doi:10.1029/2004JF000218Google Scholar
  11. Bourke MC (2005) Alluvial fans on dunes in Kaiser Crater suggest niveo-aeolian and denivation processes on Mars. Lunar Planet Sci Conf XXXVI, abstract #2373, HoustonGoogle Scholar
  12. Bourke MC (2006) A new model for linear dune formation: merged barchan convoys on Mars. Lunar Planet Sci Conf XXXVII, abstract #2432, HoustonGoogle Scholar
  13. Bourke MC, Wilson SA, Zimbelman JR (2003) The variability of transverse aeolian ridges in troughs on Mars. Lunar Planet Sci XXXIV, abstract #2090, HoustonGoogle Scholar
  14. Bourke MC, Balme M, Zimbelman JR (2004) A comparative analysis of barchan dunes in the intra-crater dune fields and the North Polar Sand Sea. Lunar Planet Sci XXXV, abstract 1453, HoustonGoogle Scholar
  15. Bourke MC, Edgett KS, Cantor BA (2008) Recent aeolian dune change on Mars. Geomorphology 94:247–255CrossRefGoogle Scholar
  16. Bourke MC, Goudie AS (2009) Varieties of barchan dunes in the Namib Desert and on Mars. Aeolian Research, 1:45–54. doi:10.1016/j.aeolia.2009.05.002 PDFGoogle Scholar
  17. Bourke MC, Lancaster N, Fenton LK, Parteli EJR, Zimbelman JR, Radebaugh J (2010) Extraterrestrial dunes: an introduction to the special issue on planetary dune systems. Geomorphology. doi:10.1016/j.geomorph.2010.04.007Google Scholar
  18. Breed CS (1977) Terrestrial analogs of the Hellespontus dunes, Mars. Icarus 30(2):326–340CrossRefGoogle Scholar
  19. Breed CS, Grolier MJ, McCauley JF (1979) Morphology and distribution of common ‘sand’ dunes on Mars: Comparison with the Earth. J Geophys Res 84(B14):8183–8204. doi:10.1029/JB084iB14p08183CrossRefGoogle Scholar
  20. Bridges NT, Bourke MC, Geissler PE, Banks ME, Colon C, Diniega S, Golombek MP, Hansen CJ, Mattson S, McEwen AS, Mellon MT, Stantzos N, Thomson BJ (2011) Planet-wide sand motion on Mars. Geology 40:31–34. doi:10.1130/G32373.1CrossRefGoogle Scholar
  21. Bridges NT, Ayoub F, Avouac JP, Leprince S, Lucas A, Mattson S (2012) Earth-like sand fluxes on Mars. Nature 485(7398):339–342. doi:10.1038/nature11022CrossRefGoogle Scholar
  22. Bridges N, Geissler P, Silvestro S, Banks M (2013) Bedform migration on mars: current results and future plans. Aeolian Res 9:133–151. doi:10.1016/j.aeolia.2013.02.004CrossRefGoogle Scholar
  23. Bristow CS, Augustinus PC, Wallis IC, Jol HM, Rhodes EJ (2010) Investigation of the age and migration of reversing dunes in Antarctica using GPR and OSL, with implications for GPR on Mars. Earth Planet Sci Lett 289:30–42CrossRefGoogle Scholar
  24. Burr DM, Carling PA, Beyer RA, Lancaster N (2004) Flood-formed dunes in Athabasca Valles, Mars: morphology, modeling, and implications. Icarus 171:68–83CrossRefGoogle Scholar
  25. Cardinale M, Komatsu G, Silvestro S, Tirsch D (2012) The influence of local topography for wind direction on Mars: two examples of dune fields in crater basins. Earth Surf Process Landf 37:1437–1443. doi:10.1002/esp.3289CrossRefGoogle Scholar
  26. Cardinale M, Silvestro S, Vaz DA, Michaels TI, Marinangeli L, Komatsu G, Okubo CH (2013) Evidences for sand motion in Herschel crater (Mars). 44th Lunar Planet Sci Conf, abstract #2259, HoustonGoogle Scholar
  27. Carling PA (1996) Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mountains, Siberia. Sedimentology 43:647–664. doi:10.1111/j.1365-3091.1996.tb02184.xCrossRefGoogle Scholar
  28. Carling PA, Gölz E, Orr HG, Radecki-Pawlik A (2000) The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology. Sedimentology 47:227–252CrossRefGoogle Scholar
  29. Chojnacki M, Burr DM, Moersch JE, Michaels TI (2011) Orbital observations of contemporary dune activity in Endeavour Crater, Meridiani Planum, Mars. J Geophys Res 116:E00F19. doi:10.1029/2010JE003675Google Scholar
  30. Claudin P, Andreotti B (2006) A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet Sci Lett 252(1–2):30–44CrossRefGoogle Scholar
  31. Cutts JA, Smith RSU (1973) Eolian deposits and dunes on Mars. J Geophys Res 78(20):4139–4154. doi:10.1029/JB078i020p04139CrossRefGoogle Scholar
  32. Daya Sagar BS, Murtzy MBR, Radhakrishnan P (2002) Avalanches in a numerically simulated sand dune dynamics. Fractals 11(2):183–193CrossRefGoogle Scholar
  33. Durán O, Moore LJ (2013) Vegetation controls on the maximum size of coastal dunes. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1307580110Google Scholar
  34. Durán O, Schwämmle V, Herrmann HJ (2005) Breeding and solitary wave behavior of dunes. Phys Rev E Stat Nonlinear Soft Matter Phys 72:1–5CrossRefGoogle Scholar
  35. Edgett KS, Blumberg DG (1994) Star and linear dunes on Mars. Icarus 112(2):448–464CrossRefGoogle Scholar
  36. Elbelrhiti H (2012) Initiation and early development of barchan dunes: a case study of the Moroccan Atlantic Sahara desert. Geomorphology 138(1):181–188CrossRefGoogle Scholar
  37. Elder J (2006) Aeolian dunes and sandstone: overview. http://web.ncf.ca/aa456/sand/overview/index.html
  38. Endo N, Taniguchi K, Katsuki A (2004) Observation of the whole process of interaction between barchans by flume experiments. Geophys Res Lett 31:12503CrossRefGoogle Scholar
  39. Engel P (1981) Length of flow separation over dunes. J Hydr Div 107(10):1133–1143Google Scholar
  40. Fenton LK (2006) Dune migration and slip face advancement in the Rabe Crater dune field, Mars. Geophys Res Lett 33:L20201. doi:10.1029/2006GL027133CrossRefGoogle Scholar
  41. Fenton LK, Hayward RK (2010) Southern high latitude dune fields on Mars: morphology, aeolian inactivity, and climate change. Geomorphology 121:98–121CrossRefGoogle Scholar
  42. Fenton LK, Toigo AD, Richardson MI (2005) Aeolian processes in Proctor Crater on Mars: Mesoscale modeling of dune-forming winds. J Geophys Res 110:E06005. doi:10.1029/2004JE002309Google Scholar
  43. Flemming BW (2000) On the dimensional adjustment of subaqueous dunes in response to changing flow conditions: a conceptual process model. In: Trentesaux A, Garlan T (eds) Proceedings marine sandwave dynamics international workshop, 23–24 Mar 2000, University of Lille 1, France, pp 61–67Google Scholar
  44. Fryberger SG, Ahlbrandt TS (1979) Mechanisms for the formation of aeolian sand seas. Z Geomorphol 23:440–460Google Scholar
  45. Gardin E, Allemand P, Quantin C, Silvestro S, Delacourt C (2012) Dune fields on Mars: recorders of a climate change? Planet Space Sci 60:314–321CrossRefGoogle Scholar
  46. Gifford FA (1964) The Martian canals according to a purely aeolian hypothesis. Icarus 3:130–135CrossRefGoogle Scholar
  47. Glenn M (ed) (1979) Glossary. McKee ED (ed) U.S. Geological Survey professional paper vol 1052. U.S. Geological Survey, Reston, Virginia. pp 399–407Google Scholar
  48. Greeley R, Arvidson RE (1990) Aeolian processes on Venus. Earth Moon Planets 50(51):127–157CrossRefGoogle Scholar
  49. Greeley R, Iversen JD (1985) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  50. Greeley R, Binder K, Thomas PE, Schubert G, Limonadi D, Weitz CM (1995) Wind-related features and processes on Venus: summary of Magellan results. Icarus 115:399–420CrossRefGoogle Scholar
  51. Grotzinger JP, Arvidson RE, Bell JF III, Calvin W, Clark BC, Fike DA, Golombek M, Greeley R, Haldemann A, Herkenhoff KE, Jolliff BL, Knoll AH, Malin M, McLennan SM, Parker T, Soderblom L, Sohl-Dickstein JN, Squyres SW, Tosca NJ, Watters WA (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet Sci Lett 240(1):11–72CrossRefGoogle Scholar
  52. Hack JT (1941) Dunes of the western Navajo country. Geograph Rev 31:240–263CrossRefGoogle Scholar
  53. Hansen CJ, Bourke M, Bridges NT, Byrne S et al (2011) Seasonal erosion and restoration of Mars’ northern polar dunes. Science 331:575–578. doi:10.1126/science.1197636CrossRefGoogle Scholar
  54. Hayward RK, Mullins KF, Fenton LK, Hare TM, Titus TN, Bourke M, Colprete A, Christensen PR (2007) Mars Global Digital Dune Database and initial science results. J Geophys Res 112:E11007. http://dx.doi.org/10.1029/2007JE002943
  55. Hayward RK, Fenton LK, Tanaka KL, Mullins KF, Titus TN, Bourke MC, Hare TM, Christensen PR (2008) Mars global digital dune database. Distribution in North Polar region and comparison to equatorial region. Lunar Planet Sci Conf XXXIX, abstract # 1208, HoustonGoogle Scholar
  56. Hayward RK, Titus TN, Michaels TI, Fenton LK, Colaprete A, Christensen PR (2009) Aeolian dunes as ground truth for atmospheric modeling on Mars. J Geophys Res 114:E11012. doi:10.1029/2009JE003428CrossRefGoogle Scholar
  57. Hayward RK, Fenton LK, Tanaka KL, Titus TN, Colaprete A, Christensen PR (2010) Mars global digital dune database; MC-1: U.S. Geological Survey open-file report 2010-1170Google Scholar
  58. Herget J (2005) Reconstruction of Pleistocene ice-dammed lake outburst floods in the Altai Mountains, Siberia, The Geological Society of America special paper. Geological Society of America, Boulder, p 386Google Scholar
  59. Herrmann HJ, Durán O, Parteli EJR, Schatz V (2008) Vegetation and Induration as Sand Dunes Stabilizators. Journal of Coastal Research: 24(6): pp. 1357–1368. doi: http://dx.doi.org/10.2112/08A-0011.1
  60. Herkenhoff KE, Vasavada AR (1999) Dark material in the polar layered deposits and dunes on Mars. J Geophys Res (Planets) 104:16,487–16,500CrossRefGoogle Scholar
  61. Horgan BHN, Bell III JF (2012) Seasonally active slipface avalanches in the north polar sand sea of Mars: Evidence for a wind-related origin. Geophys Res Lett 39:L09201. doi:10.1029/2012GL051329Google Scholar
  62. Hunter RE (1977) Basic types of stratification in small eolian dunes. Sedimentology 24:361–387CrossRefGoogle Scholar
  63. Knaapen MAF, van Bergen Henegouw CN, Hu YY (2005) Quantifying bedform migration using multi-beam sonar. Geol-Marine Lett 25(5):306–314CrossRefGoogle Scholar
  64. Kocurek G, Ewing RC (2005) Aeolian dune field self-organization – implications for the formation of simple versus complex dune-field patterns. Geomorphology 72:94–105CrossRefGoogle Scholar
  65. Kocurek G, Havholm KG (1993) Eolian sequence stratigraphy-a conceptual framework. In: Weimer P, Posamentier H (eds) Siliciclastic sequence stratigraphy. American Association of Petroleum Geologists, Tulsa, pp 393–409Google Scholar
  66. Kocurek G, Lancaster N (1999) Aeolian sediment states: theory and Mojave Desert Kelso Dune field example. Sedimentology 46(3):505–516. doi:10.1046/j.1365-3091.1999.00227.xCrossRefGoogle Scholar
  67. Lahtela H, Titus TN, Geissler PE, Roach LH, Verba CA, Mustard JF, Murchie SL, Brown AJ, Seelos F, Seelos K, Calvin WM, Parente M, Cornwall C (2009) Coordinated HiRISE/CRISM observation on gypsum signature in Martian polar dunes. Lunar and planetary institute science conference abstracts, p 2254Google Scholar
  68. Laity JJ (2009) Deserts and desert environments. Wiley, Chichester, West Sussex, UK p 360Google Scholar
  69. Lancaster N (1995) Geomorphology of Desert Dunes. Routledge, New York, p 312Google Scholar
  70. Lancaster N (1996) Field studies of sand patch initiation processes on the northern margin of the Namib sand sea. Earth Surf Process Landf 21(10):947–954CrossRefGoogle Scholar
  71. Langevin Y, Poulet F, Bibring JP, Gondet B (2005) Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science 307(5715):1584–1586CrossRefGoogle Scholar
  72. Livingstone I, Warren A (1996) Aeolian geomorphology. Addison Wesley Longman, Harlow, p 211Google Scholar
  73. Livingstone I, Bristow C, Bryant RG, Bullard J, White K, Wiggs GFS, Baas ACW, Bateman MD, Thomas DSG (2010) The Namib Sand Sea digital database of aeolian dunes and key forcing variables. Aeolian Research, 2(2), p. 93–104. doi:10.1016/j.aeolia.2010.08.001CrossRefGoogle Scholar
  74. Lobo FJ, Hernández-Molina FJ, Somoza L, Rodero J, Maladonado A, Barnolas A (2000) Patterns of bottom current flow deduced from dune asymmetries over the Gulf of Cadiz shelf (southwest Spain). Mar Geol 164:91–117CrossRefGoogle Scholar
  75. Lorenz RD, Claudin P, Andreotti BM, Radebaugh J, Tokano T (2010) A 3 km atmospheric boundary layer on Titan indicated by dune spacing and Huygens data. Icarus 205:719–721CrossRefGoogle Scholar
  76. Luo W, Dong Z, Qian G, Lu J (2012) Wind tunnel simulation of the three-dimensional airflow patterns behind cuboid obstacles at different angles of wind incidence, and their significance for the formation of sand shadows. Geomorphology 139–140:258–270CrossRefGoogle Scholar
  77. Martínez ML, Psuty NP, Lubke RA (2004) A perspective on coastal dunes. In: Martínez ML, Psuty NP (eds) Coastal dunes, ecology and conservation. Springer, Berlin/Heidelberg, pp 3–11CrossRefGoogle Scholar
  78. McCauley JF, Carr MH, Cutts JA, Hartmann WK, Masursky H, Milton DJ, Sharp RP, Wilhelms DE (1972) Preliminary Mariner 9 report on the geology of Mars. Icarus 17:289–327CrossRefGoogle Scholar
  79. McKee ED (1979) Introduction to a study of global sand seas. In: McKee ED (ed) U.S. Geological Survey professional paper, vol 1052. pp 3–17Google Scholar
  80. Moore HJ (1985) The Martian dust storm of sol 1742. J Geophys Res (Planets) 90:163–174CrossRefGoogle Scholar
  81. Nordstrom KF, Jackson NL (1994) Aeolian processes and dune fields in estuaries. Phys Geogr 15(4):358–371Google Scholar
  82. Núñez-González F, Martín-Vide JP (2011) Analysis of antidune migration direction. J Geophys Res 116:F02004. doi:10.1029/2010JF001761Google Scholar
  83. Parteli EJR, Durán O, Herrmann HJ (2007) The minimal size of a barchan dune. Phys Rev E 75:01130, arXiv:0705.1778Google Scholar
  84. Parteli EJR, Durán O, Tsoar H, Schwämmle V, Herrmann HJ (2009) Dune formation under bimodal winds. Proc Natl Acad Sci U S A 106(52):22085–22089CrossRefGoogle Scholar
  85. Petrich C, Eicken H, Polashenski CM, Sturm M, Harbeck J, Perovich DK, Finnegan DC (2012) Snow dunes: a controlling factor of melt pond distribution on Arctic sea ice. J Geophys Res doi:10.1029/2012JC008192 (in press)Google Scholar
  86. Pye K, Tsoar H (1990) Aeolian sand and sand dunes. Unwin Hyman, London, p 396CrossRefGoogle Scholar
  87. Radebaugh J, Lorenz R, Farr T, Paillou P, Savage C, Spencer C (2010) Linear dunes on Titan and earth: initial remote sensing comparison. Geomorphology 121:122–132CrossRefGoogle Scholar
  88. Reffet E, Courrech du Pont S, Hersen P, Douady S (2010) Supplementary information: formation and stability of transverse and longitudinal sand dunes. Geology 38:491–494 (1–20)Google Scholar
  89. Roach LH, Mustard JF, Murchie S, Langevin Y, Bibring JP, Bishop J, Bridges N, Brown A, Byrne S, Ehlmann BL, Herkenhoff K, McGuire PC, Milliken RE, Pelkey S, Poulet F, Seelos FP, Seelos K, Team C (2007) CRISM spectral signatures of the north polar gypsum dunes. Lunar and planetary institute conference abstracts, p 1970Google Scholar
  90. Rubin DM, Carter CL (2006) Bedforms and cross-bedding in animation: SEPM atlas series no. 2. http://www.sepm.org/http://walrus.wr.usgs.gov/seds/bedforms
  91. Rubin DM, Hunter RE (1985) Why deposits of longitudinal dunes are rarely recognized in the geological record. Sedimentology 32:147–157CrossRefGoogle Scholar
  92. Rubin DM, Ikeda H (1990) Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows. Sedimentology 37:673–684CrossRefGoogle Scholar
  93. Sagan C, Veverka J, Fox P, Dubisch R et al (1972) Variable features on Mars, 2. Mariner 9 global results. J Geophys Res 78:4163–4196CrossRefGoogle Scholar
  94. Schatz V, Herrmann HJ (2006) Flow separation in the lee side of transverse dunes: a numerical investigation. Geomorphology 81(1–2):207–216CrossRefGoogle Scholar
  95. Schwämmle V, Herrmann H (2003) Solitary wave behaviour of sand dunes. Nature 426:619–620. doi:10.1038/426619aCrossRefGoogle Scholar
  96. Silvestro S, Fenton LK, Vaz DA, Bridges NT, Ori GG (2010) Ripple migration and dune activity on Mars: evidence for dynamic wind processes. Geophys Res Lett 37:L20203. doi:10.1029/2010GL044743CrossRefGoogle Scholar
  97. Silvestro S, Vaz DA, Fenton LK, and Geissler PE (2011) Active aeolian processes on Mars: A regional study in Arabia and Meridiani Terrae. Geophys Res Lett 38:L20201. doi:10.1029/2011GL048955CrossRefGoogle Scholar
  98. Silvestro S, Fenton LK, Michaels TI, Valdez A, Ori GG (2012) Interpretation of the complex dune morphology on Mars: dune activity, modelling and a terrestrial analogue. Earth Surf Process Landf 37:1424–1436. doi:10.1002/esp.3286CrossRefGoogle Scholar
  99. Silvestro S, Vaz DA, Ewing RC, Rossi AP, Fenton LK, Michaels TI, Flahut J, Geissler PE (2013) Pervasive aeolian activity along rover Curiosity’s traverse in Gale Crater, Mars. Geology 41(4):484–486CrossRefGoogle Scholar
  100. Simons DB, Richardson EV (1966) Resistance to flow in alluvial channels. Geological survey professional paper 422-J, Washington, DCGoogle Scholar
  101. Smith IB, Holt JW, Spiga A, Howard AD, Parker G (2013) The spiral troughs of Mars as cyclic steps. J Geophys Res Planets 118:1835–1857. doi:10.1002/jgre.20142CrossRefGoogle Scholar
  102. Sotin C, Lawrence KJ, Reinhardt B, Barnes JW, Brown RH, Hayes AG, Le Mouélic S, Rodriguez S, Soderblom JM, Soderblom LA, Baines KH, Buratti BJ, Clark RN, Jaumann R, Nicholson PD, Stephan K (2012) Observations of Titan’s Northern lakes at 5um: implications for the organic cycle and geology. Icarus 221:768–786CrossRefGoogle Scholar
  103. Stoesser T, Braun C, García-Villalba M, Rodi W (2008) Turbulence structures in flow over two-dimensional dunes. J Hydraul Eng 134(1):42–55CrossRefGoogle Scholar
  104. Summerfield MA (1991) Global geomorphology. Longman, EssexGoogle Scholar
  105. Thomas P (1984) Martian intra-crater splotches: occurrence, morphology, and colors. Icarus 57:205–227. doi:10.1016/0019-1035(84)90066-6CrossRefGoogle Scholar
  106. Thomas DSG (1989) Aeolian sand deposits. In: Thomas DSG (ed) Arid zone geomorphology. Belhaven Press, London, pp 232–261Google Scholar
  107. Thomas PC, Veverka J, Lee S, Bloom A (1981) Classification of wind streaks on Mars. Icarus 45:124–153CrossRefGoogle Scholar
  108. Tirsch D, Craddock RA, Platz T, Maturilli A, Helbert J, Jaumann R (2012) Spectral and petrologic analyses of basaltic sands in Kau Desert (Hawaii)–implications for the dark dunes on Mars. Earth Surface Processes and Landforms 37(4):434–448. doi:10.1002/esp.2266.CrossRefGoogle Scholar
  109. Tirsch D, Jaumann R (2008) Mars: dark intra-crater dunes on a regional scale. Planetary dunes workshop, pp 71–72Google Scholar
  110. Todd BJ (2005) Morphology and composition of submarine barchan dunes on the Scotian Shelf, Canadian Atlantic margin. Geomorphology 67(3–4):487–500CrossRefGoogle Scholar
  111. Tsoar H (2001) Types of aeolian sand dunes and their formation. In: Balmforth NJ, Provenzale A (eds) Geomorphological fluid mechanics, vol 582, Lecture notes in physics. Springer, Berlin, p 403CrossRefGoogle Scholar
  112. Tsoar H (2002) Climatic factors affecting mobility and stability of sand dunes. In: Lee JA, Zobeck TM (eds) Proceedings of ICAR5/GCTE-SEN joint conference, international center for arid and semiarid lands studies, Texas Tech University, Lubbock., p 423Google Scholar
  113. Tsoar H (2008) Linear dunes on Earth and Mars – similarity and dissimilarity. Planetary dunes workshop: a record of climate change. 29 Apr – 2 May 2008, Alamogordo. LPI contribution no. 1403, pp 75–76Google Scholar
  114. Tsoar H, Greeley R, Peterfreund AR (1979) Mars: the north polar sand sea and related wind patterns. J Geophys Res 84:8167–8180CrossRefGoogle Scholar
  115. Tsoar H, Blumberg DG, Stoler Y (2004) Elongation and migration of sand dunes. Geomorphology 57:293–302CrossRefGoogle Scholar
  116. van Dijk PM, Arens SM, van Boxel HJ (1999) Eolian processes across transverse dunes. II: modelling the sediment transport and profile development. Earth Surf Process Landf 24:319–333CrossRefGoogle Scholar
  117. Vendetti JG, Chruch M, Benett SJ (2005) On the transition between 2D and 3D dunes. Sedimentology 52:1343–1359CrossRefGoogle Scholar
  118. Walker IJ, Nickling WG (2002) Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes. Progress Phys Geogr 26(1):47–75CrossRefGoogle Scholar
  119. Weitz CM, Plaut JJ, Greeley R, Saunders RS (1994) Dunes and microdunes on Venus: why were so few found in the Magellan data? Icarus 112(1):282–295CrossRefGoogle Scholar
  120. Wilson IG (1972) Aeolian bedforms – their development and origins. Sedimentology 19:173–210CrossRefGoogle Scholar
  121. Worman S, Murray AB, Littlewood R, Andreotti B, Claudin P (2013) Modeling emergent large-scale structures of barchan dune fields. Geology G34482.1. doi:10.1130/G34482.1Google Scholar
  122. Wye LC (2011) Radar scattering from Titan and Saturn’s icy satellites using the Cassini spacecraft. Dissertation, Stanford UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marco Cardinale
    • 1
  • Henrik Hargitai
    • 2
  • Kathryn E. Fitzsimmons
    • 3
  1. 1.Laboratorio di Telerilevamento e Planetologia, Dipartimento di Scienze Psicologiche, Umanistiche e del TerritorioUniversità degli Studi G. D’AnnunzioChietiItaly
  2. 2.NASA Ames Research Center/NPPMoffett FieldUSA
  3. 3.Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany