Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Double-Layer Ejecta

  • Nadine G. Barlow
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_137


Impact crater ejecta morphology displaying two continuous deposits.


A type of  layered ejecta.


Description/Structural Units

Double-layer ejecta (DLE) craters have been identified on Mars and Ganymede. The inner layer of the DLE morphology is thicker and terminates in a concave scarp. The outer layer is thinner and more extensive, typically terminating in a distal ridge (rampart) (Barlow et al. 2000; Schenk and Ridolfi 2002; Boyce and Mouginis-Mark 2006; Boyce et al. 2010). Martian DLE craters display a strong radial texture of grooves and ridges extending from the crater rim to the edge of the outer layer (Fig. 1). A topographic moat typically occurs just beyond the crater rim. Secondary craters extending beyond the outer ejecta layer are seldom seen (Boyce and Mouginis-Mark 2006).
This is a preview of subscription content, log in to check access.


  1. Abramov O, Kring DA (2005) Impact-induced hydrothermal activity on early Mars. J Geophys Res 110. doi:10.1029/2005JE002453Google Scholar
  2. Barlow NG (1994) Sinuosity of Martian rampart ejecta deposits. J Geophys Res 99:10927–10935CrossRefGoogle Scholar
  3. Barlow NG (2005) A review of Martian impact crater ejecta structures and their implications for target properties. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geological Society of America special paper 384. Geological Society of America, Boulder, pp 433–442CrossRefGoogle Scholar
  4. Barlow NG (2006) Impact craters in the northern hemisphere of Mars: layered ejecta and central pit characteristics. Meteorit Planet Sci 41:1425–1436CrossRefGoogle Scholar
  5. Barlow NG, Bradley TL (1990) Martian impact craters: correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus 87:156–179CrossRefGoogle Scholar
  6. Barlow NG, Perez CB (2003) Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles. J Geophys Res 108. doi:10.1029/2002JE002036Google Scholar
  7. Barlow NG, Boyce JM, Costard FM, Craddock RA, Garvin JB, Sakimoto SEH, Kuzmin RO, Roddy DJ, Soderblom LA (2000) Standardizing the nomenclature of Martian impact crater ejecta morphologies. J Geophys Res 105:26,733–26,738CrossRefGoogle Scholar
  8. Beaty D, 26 colleagues of the MEPAG Special Regions–Science Analysis Group (2006) Findings of the Mars special regions science analysis group. Astrobiology 6:677–732CrossRefGoogle Scholar
  9. Boyce JM, Mouginis-Mark PJ (2006) Martian craters viewed by the thermal emission imaging system instrument: double-layered ejecta craters. J Geophys Res 111. doi:10.1029/2005JE002638Google Scholar
  10. Boyce J, Barlow N, Mouginis-Mark P, Stewart S (2010) Rampart craters on Ganymede: their implications for fluidized ejecta emplacement. Meteorit Planet Sci 45:638–661CrossRefGoogle Scholar
  11. Horner VM, Greeley R (1982) Pedestal craters on Ganymede. Icarus 51:549–562CrossRefGoogle Scholar
  12. Jones KB, Head JW III, Pappalardo RT, Moore JM (2003) Morphology and origin of palimpsests on Ganymede based on Galileo observations. Icarus 164:197–212CrossRefGoogle Scholar
  13. Kenkmann T, Schönian F (2006) Ries and Chicxulub: impact craters on Earth provide insights for Martian ejecta blankets. Meteorit Planet Sci 41:1587–1603CrossRefGoogle Scholar
  14. Mouginis-Mark P (1979) Martian fluidized crater morphology: variations with crater size, latitude, altitude, and target material. J Geophys Res 84:8011–8022CrossRefGoogle Scholar
  15. Mouginis-Mark P (1981) Ejecta emplacement and modes of formation of Martian fluidized ejecta craters. Icarus 45:60–76CrossRefGoogle Scholar
  16. Neal JE, Barlow NG (2004) Layered ejecta craters on Ganymede: comparisons with Martian analogs. Lunar Planet Sci Conf XXXV, abstract #1121, HoustonGoogle Scholar
  17. Schenk PM, Ridolfi FJ (2002) Morphology and scaling of ejecta deposits on icy satellites. Geophys Res Lett 29. doi:10.1029/2001GL013512Google Scholar
  18. Schenk PM, Chapman CR, Zahnle K, Moore JM (2004) Ages and interiors: the cratering record of the Galilean satellites. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter: the planet, satellites and magnetosphere. Cambridge University Press, Cambridge, pp 427–456Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNorthern Arizona UniversityFlagstaffUSA