Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Dust Pond

  • Henrik Hargitai
  • Mihály Horányi
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_132


Fine-grained deposits in topographic lows transported and sorted by intense localized electric fields acting on charged dust or by impact-induced shaking.



Fine-grained smooth deposits in depressions (craters) displaying sharply bounded surfaces (Cheng et al. 2002). On Eros, color properties of dust ponds are distinct from the surrounding terrain: dust ponds are bluish and rich in silicate material (olivines and pyroxenes) (Robinson et al. 2001).


Possible dust transporting mechanisms and other formation models include
  1. (1)

    Electrostatic charging, mobilization, and subsequent transport of charged dust (Lee 1996; Tepliczky and Kereszturi 2002; Haugsjaa and Colwell 2006; Poppe et al. 2012; Hartzell et al. 2012): Photoelectric charging can generate large enough potential differentials between illuminated and dark regions to mobilize charged dust particles. The size of the dust particles that can...

This is a preview of subscription content, log in to check access.


  1. Cheng AF, Izenberg N, Chapman CR, Zuber MT (2002) Ponded deposits on Asteroid 433 Eros. Meteorit Planet Sci 37:1095–1105CrossRefGoogle Scholar
  2. Dombard AJ, Barnouin OS, Prockter LM, Thomas PC (2010) Boulders and ponds on the Asteroid 433 Eros. Icarus 210:713–721CrossRefGoogle Scholar
  3. Gold T (1955) The lunar surface. Mon Not Royal Astron Soc 115:585CrossRefGoogle Scholar
  4. Grund CJ, Colwell JE (2007) Autonomous lunar dust observer for the systematic study of natural and anthropogenic dust phenomena on airless bodies. NASA advisory council workshop on science associated with the lunar exploration architecture, 27 Feb–2 March, 2007Google Scholar
  5. Hanson KH, Kelson KI, Angell MM, Lettis WR (1999) Techniques for identifying faults and determining their origins. U.S. Nuclear Regulatory Commission NUREG/CR-5503, Washington, DCGoogle Scholar
  6. Hartzell CM (2008) The dynamics of near-surface dust on airless bodies. Thesis, University of ColoradoGoogle Scholar
  7. Hartzell CM (2012) The dynamics of near-surface dust on airless bodies. Thesis, University of ColoradoGoogle Scholar
  8. Hartzell CM, Scheeres DJ, Wang X (2012) Electrostatic dust motion on asteroids: current understanding. In: Asteroids, comets and meteors conference, # 6055Google Scholar
  9. Haugsjaa AL, Colwell JE (2006) Modelling electrostatic dust transport on Eros. Lunar Planer Sci, TX XXXVII , abstract # 1225, HoustonGoogle Scholar
  10. Hiesinger H, Ruesch O, Jaumann R, Nathues A, Raymond CA, Russell CT (2012) Smooth pond-like deposits on asteroid 4 Vesta: preliminary results from the Dawn mission. 43rd Lunar Planet Sci Conf, abstract #2487, HoustonGoogle Scholar
  11. Ip W-H (1986) Electrostatic charging and dust transport at Mercury’s surface. Geophys Res Lett 13(11):1133–1136CrossRefGoogle Scholar
  12. Jaumann R et al (2012) Vesta’s shape and morphology. Science 336:687–690. doi:10.1126/science.1219122CrossRefGoogle Scholar
  13. Lee P (1996) Dust levitation on asteroids. Icarus 124(1):181–194CrossRefGoogle Scholar
  14. Miyamoto H, Kargel JS, W Fink, Furfaro R (2008) Granular processes on Itokawa, a small near-Earth asteroid: implications for resource utilization, Proceedings of the SPIE 6960, space exploration technologies, 69600I. doi:10.1117/12.784634Google Scholar
  15. Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis. Eng Geol 44(1–4):1–76CrossRefGoogle Scholar
  16. Poppe AR, Piquette M, Likhanskii A, Horanyi M (2012) The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport. Icarus 221:134–146CrossRefGoogle Scholar
  17. Rennilson JJ, Criswell DR (1974) Surveyor observations of Lunar Horizon-Glow. Moon 10(2):121–142CrossRefGoogle Scholar
  18. Robinson MS, Thomas PC, Veverka J, Murchie S, Carcich B (2001) The nature of ponded deposits on Eros. Nature 413:396–400CrossRefGoogle Scholar
  19. Tepliczky I, Kereszturi A (2002) Signs of change in the electrostatic sedimentation of Eros. 33th Lunar Planet Sci Conf, abstract #1656, HoustonGoogle Scholar
  20. Veverka J et al (2001) The landing of the NEAR–Shoemaker spacecraft on Asteroid 433 Eros. Nature 413:390–393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA
  2. 2.Laboratory for Atmospheric and Space Physics and Department of PhysicsUniversity of ColoradoBoulderUSA