Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Dust Devil Track

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_131


Linear, meandering, cycloidal, or looping albedo features found on Earth and Mars that are clearly superposed on the terrain and represent the passage of an atmospheric vortex with entrained dust (the dust devil) (Balme et al. 2003).


A type of variable feature ( albedo feature).


Dark filamentary marking (obsolete) (Veverka 1976)


Dust devil tracks are linear and curvilinear elongated albedo features (narrow streaks) 10–200 m across on Mars and a few tens of meter across on Earth, often crossing each other and a range of terrain and surface types, sometimes looping back on themselves (Edgett and Malin 2000; Fig. 1). Dust devil tracks can be darker or brighter (relatively rare) (Raack et al. 2011) than the surrounding regions depending on the formation process.
This is a preview of subscription content, log in to check access


  1. Baddeley PFH (1860) Whirlwinds and dust storms of India. Bell and Daldy, LondonGoogle Scholar
  2. Balme M, Greeley R (2006) Dust devils on Earth and Mars. Rev Geophys 44:RG3003. doi:10.1029/2005RG000188CrossRefGoogle Scholar
  3. Balme MR, Whelley PL, Greeley R (2003) Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J Geophys Res 108(E8):5086. doi:10.1029/2003JE002096CrossRefGoogle Scholar
  4. Balme MR, Pathare A, Metzger SM, Towner MC, Lewis SR, Spiga A, Fenton LK, Rennó NO, Elliott HM, Saca FA, Michaels TI, Russell P, Verdasca J (2012) Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221:632–645CrossRefGoogle Scholar
  5. Brooks HB (1960) Rotation of dust devils. J Meteorol 17:84–86CrossRefGoogle Scholar
  6. Chaikin AL, Maxwell TA, El-Baz F (1981) Temporal changes in the cerberus region of Mars: Mariner 9 and Viking comparisons. Icarus 45:167–178CrossRefGoogle Scholar
  7. Edgett KS, Malin MC (2000) Martian dust raising and surface albedo controls: thin, dark (and sometimes bright) streaks and dust devils in MGS high-resolution images. Lunar Planet Sci XXXI, abstract #1073, HoustonGoogle Scholar
  8. Fenton LK, Toigo AD, Richardson MI (2005) Aeolian processes in Proctor Crater on Mars: mesoscaling modeling of dune-forming winds. J Geophys Res 110:E06005Google Scholar
  9. Geissler P (2005) Three decades of Martian surface changes. J Geophys Res 110:E02001. doi:10.1029/2004JE002345Google Scholar
  10. Geissler PE, Tornabene L, Verba C, Bridges N et al (2008) HIRISE observations of Martian albedo boundaries. Lunar Planet Sci Conf XXXIX, abstract #2352, HoustonGoogle Scholar
  11. Grant JA, Schultz PA (1987) Possible tornado-like tracks on Mars. Science 237:883–885CrossRefGoogle Scholar
  12. Greeley R, Whelley PL, Neakrase LDV (2004) Martian dust devils: directions of movement inferred from their tracks. Geophys Res Lett 31:l24702. doi:10.1029/2004GL021599CrossRefGoogle Scholar
  13. Greeley R, Arvidson R, Bell JF III, Christensen P, Foley D, Haldemann A, Kuzmin RO et al (2005) Martian variable features: new insight from the Mars express orbiter and the Mars exploration rover spirit. J Geophys Res 110:E06002. doi:10.1029/2005JE002403Google Scholar
  14. MSSS (1998) SUV tracks on Mars? The ‘Devil’ is in the details. http://www.msss.com/mars_images/moc/7_30_98_devil_rel/
  15. Neubauer FM (1966) Thermal convection in the Martian atmosphere. J Geophys Res 71(10):2419–2426. doi:10.1029/JZ071i010p02419CrossRefGoogle Scholar
  16. Örmo J, Komatsu G (2003) Mars Orbiter Camera observation of linear and curvilinear features in the Hellas Basin: indications for multiple processes of formation. J Geophys Res 108:1–13Google Scholar
  17. Raack J, Reiss D, Hiesinger H (2011) Bright dust devil tracks on Earth: implications for their formation on Mars. 42nd Lunar Planet Sci Conf, abstract #1754, HoustonGoogle Scholar
  18. Reiss D, Raack J, Pio Rossi A, Di Achille G, Hiesinger H (2010) First in-situ analysis of dust devil tracks (DDTs) on Earth and their comparison with tracks on Mars. In: EPSC abstracts vol 5, EPSC2010-362, European planetary science congressGoogle Scholar
  19. Reiss D, Raack J, Hiesinger H (2011) Bright dust devil tracks on Earth: implications for their formation on Mars. Icarus 211:917–920CrossRefGoogle Scholar
  20. Reiss D, Raack J, Maturilli A, Rossi AP, Erkeling G (2012) Dust devil tracks in the Turpan depression desert (China): implications for their formation on Mars. 43rd Lunar Planet Sci Conf, abstract #2227, HoustonGoogle Scholar
  21. Reiss D, Zimmerman MI, Lewellen DC (2013) Formation of Cycloidal dust devil tracks by deposition of coarse sands in southern Peru: implications for Mars. 44th Lunar Planet Sci Conf, abstract #2446, HoustonGoogle Scholar
  22. Reiss D, Spiga A, Erkeling G (2014) The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227:8–20CrossRefGoogle Scholar
  23. Rossi AP, Marinangeli L (2004) The first terrestrial analogue to Martian dust devil tracks found in Ténéré Desert. Niger Gophys Res Lett 31:L06702Google Scholar
  24. Statella T, Pina P, Silva E (2012) Image processing algorithm for the identification of Martian Dust Devil Tracks in MOC and HiRISE images. Planet Space Sci 70:46–58CrossRefGoogle Scholar
  25. Thomas PC, Gierasch PJ (1985) Dust devils on Mars. Science 230:175–177CrossRefGoogle Scholar
  26. Veverka J (1976) Variable features on Mars. VII. Dark filamentary markings on Mars. Icarus 27:495–502CrossRefGoogle Scholar
  27. Whelley PL, Greeley R (2008) The distribution of dust devil activity on Mars. J Geophys Res 113(E7)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA
  2. 2.Instituto Federal de Educação, Ciência e Tecnologia de Mato GrossoCuiabáBrazil