Skip to main content

Diapir (Mantle)

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms

Definition

A less dense body of rock uplifted by buoyant isostatic forces through more dense rock. This entry focuses on diapirs ascending through the Earth’s mantle, i.e., mantle diapirs. The buoyancy can arise from thermal or compositional causes, and the buoyant mass can be tailless or have a tail connecting it to the source region which continues to supply buoyant material at a slower rate for a longer period of time. Decompression melting of the diapir at shallow mantle levels produces magmatic provinces of mainly mafic composition.

Related Terms

Mantle diapirs; Mantle plumes

Description

At the largest scale, as recognized on Earth, Venus and Mars, mantle plumes (mantle diapirs with tails) can produce major magmatic provinces (large igneous provinces, LIPs). On Earth these consist of flood basalts, minor volcanic edifies, and a plumbing system of regional radiating and linear dike swarms, sill complexes, mafic-ultramafic intrusions, associated silicic magmatism (due to partial...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker VR, Maruyama S, Dohm JM (2007) Tharsis superplume and the geological evolution of Early Mars. In: Yuen DA, Maruyama S, Karato S-i, Windley BF (eds) Superplumes: beyond plate tectonics. Springer, Dordrecht, pp 507–522

    Chapter  Google Scholar 

  • Bryan SE, Ferrari L (2013) Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geol Soc Am Bull 125:1053–1078

    Article  Google Scholar 

  • Campbell IH (1998) The mantle’s chemical structure: insights from the melting products of mantle plumes. In: Jackson INS (ed) The Earth’s mantle: composition, structure and evolution. Cambridge University Press, New York, pp 259–310

    Google Scholar 

  • Campbell IH (2005) Large igneous provinces and the mantle plume hypothesis. Elements 1:265–269

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205(3–4):295–308

    Article  Google Scholar 

  • Dobretsov NL, Kirdyashkin AA, Kirdyashkin AG, Vernikovsky VA, Gladkov IN (2008) Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 100:66–92

    Article  Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge University Press, New York

    Book  Google Scholar 

  • Ernst RE, Buchan KL (2003) Recognizing mantle plumes in the geological record. Ann Rev Earth Planet Sci 31:469–523

    Article  Google Scholar 

  • Ernst RE, Buchan KL, Desnoyers DW (2007) Plumes and plume clusters on Earth and Venus: evidence from large igneous provinces (LIPs). In: Yuen DA, Maruyama S, Karato S-i, Windley BF (eds) Superplumes: beyond plate tectonics. Springer, Dordrecht, pp 537–562

    Chapter  Google Scholar 

  • Hamilton VE, Stofan ER (1996) The geomorphology and evolution of Hecate Chasma, Venus. Icarus 121:171–194

    Article  Google Scholar 

  • Harder H, Christensen UR (1996) A one-plume model of Martian mantle convection. Nature 380:507–509

    Google Scholar 

  • Hansen VL, Olive A (2010) Artemis, Venus: the largest tectonomagmatic feature in the solar system? Geology 38:467–470. doi:10.1130/G30643.1

    Article  Google Scholar 

  • Head JW, Crumpler LS, Aubele JC, Guest JE, Saunders RS (1992) Venus volcanism: classification of volcanic features and structures, associations, and global distribution from Magellan data. J Geophys Res 97:13153–13197

    Article  Google Scholar 

  • Herrick RR (1999) Small mantle upwellings are pervasive on Venus and Earth. Geophys Res Lett 26:803–806

    Article  Google Scholar 

  • Ishida M, Maruyama S, Suetsugu D, Matsuzaka S, Eguchi T (1999) Superplume project: towards a new view of whole Earth dynamics. Earth Planet Space 51(1):1–5

    Article  Google Scholar 

  • Jellinek AM, Lenardic A, Manga M (2002) The influence of interior mantle temperature on the structure of plumes: heads for Venus, tails for the Earth. Geophys Res Lett 29:11. doi:10.1029/2001GL014624

    Article  Google Scholar 

  • Krassilnikov AS, Kostama V-P, Aittola M, Guseva EN, Cherkashina OS (2012) Relationship of coronae, regional plains and rift zones on Venus. Planet Space Sci 68:56–75

    Article  Google Scholar 

  • Li Q-S, Kiefer WS (2007) Mantle convection and magma production on present-day Mars: effects of temperature-dependent rheology. Geophys Res Lett 34: L16203

    Google Scholar 

  • Magee KP, Head JW (2001) Large flow fields on Venus: implications for plumes, rift associations, and resurfacing. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America special paper 352. Geological Society of America, Boulder, pp 81–101

    Chapter  Google Scholar 

  • Maruyama S, Yuen DA, Windley BF (2007) Dynamics of plumes and superplumes through time. In: Yuen DA, Maruyama S, Karato S-i, Windley BF (eds) Superplumes: beyond plate tectonics. Springer, Dordrecht, pp 441–502

    Chapter  Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: new results from finite frequency tomography. Geochem Geophys Geosyst 7(Q11007):69. doi:10.1029/2006GC001248

    Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Article  Google Scholar 

  • Roberts JH, Zhong SJ (2004) Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars. J Geophys Res 109:E03009 doi:10.1029/2003JE002226

    Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schubert G, Masters G, Olson P, Tackley P (2004) Superplumes or plume clusters? Phys Earth Planet Inter 146:147–162

    Article  Google Scholar 

  • Şengör AMC (2001) Elevation as indicator of mantle-plume activity. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America special paper 352. Geological Society of America, Boulder, pp 183–225

    Chapter  Google Scholar 

  • Senske DA, Schaber GG, Stofan ER (1992) Regional topographic rises on Venus: geology of Western Eistla Regio and comparison to Beta Regio and Atla Regio. J Geophys Res 97:13395–13420

    Article  Google Scholar 

  • Smrekar SE, Sotin C (2012) Constraints on mantle plumes on Venus: implications for volatile history. Icarus 217:510–523

    Google Scholar 

  • Sobolev SV, Sobolev AV, Kuzmin DR, Krivolutskaya NA, Petrunin AG, Arndt NT, Radko VA, Vasiliev YR (2011) Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477:312–316. doi:10.1038/nature10385

    Article  Google Scholar 

  • Stofan ER, Smrekar SE (2005) Large topographic rises, coronae, large flow fields, and large volcanoes on Venus: evidence for mantle plumes? In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geological Society of America special paper 388. Geological Society of America, Boulder, pp 841–861

    Chapter  Google Scholar 

  • Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010) Diamonds sampled by plumes from the core-mantle boundary. Nature 466:352–355. doi:10.1038/nature09216

    Article  Google Scholar 

  • Wilson JT (1963) A possible origin of the Hawaiian Islands. Can J Earth Sci 41:863–870

    Google Scholar 

  • Yuen DA, Maruyama S, Karato S-i, Windley BR (eds) (2007) Superplumes: beyond plate tectonics. Springer, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Ernst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Ernst, R.E. (2015). Diapir (Mantle). In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_127

Download citation

Publish with us

Policies and ethics