Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Diapir (Mantle)

  • Richard E. Ernst
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_127


A less dense body of rock uplifted by buoyant isostatic forces through more dense rock. This entry focuses on diapirs ascending through the Earth’s mantle, i.e., mantle diapirs. The buoyancy can arise from thermal or compositional causes, and the buoyant mass can be tailless or have a tail connecting it to the source region which continues to supply buoyant material at a slower rate for a longer period of time. Decompression melting of the diapir at shallow mantle levels produces magmatic provinces of mainly mafic composition.

Related Terms

Mantle diapirs; Mantle plumes


At the largest scale, as recognized on Earth, Venus and Mars, mantle plumes (mantle diapirs with tails) can produce major magmatic provinces (large igneous provinces, LIPs). On Earth these consist of flood basalts, minor volcanic edifies, and a plumbing system of regional radiating and linear dike swarms, sill complexes, mafic-ultramafic intrusions, associated silicic magmatism (due to partial...

This is a preview of subscription content, log in to check access.


  1. Baker VR, Maruyama S, Dohm JM (2007) Tharsis superplume and the geological evolution of Early Mars. In: Yuen DA, Maruyama S, Karato S-i, Windley BF (eds) Superplumes: beyond plate tectonics. Springer, Dordrecht, pp 507–522CrossRefGoogle Scholar
  2. Bryan SE, Ferrari L (2013) Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. Geol Soc Am Bull 125:1053–1078CrossRefGoogle Scholar
  3. Campbell IH (1998) The mantle’s chemical structure: insights from the melting products of mantle plumes. In: Jackson INS (ed) The Earth’s mantle: composition, structure and evolution. Cambridge University Press, New York, pp 259–310Google Scholar
  4. Campbell IH (2005) Large igneous provinces and the mantle plume hypothesis. Elements 1:265–269CrossRefGoogle Scholar
  5. Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205(3–4):295–308CrossRefGoogle Scholar
  6. Dobretsov NL, Kirdyashkin AA, Kirdyashkin AG, Vernikovsky VA, Gladkov IN (2008) Modelling of thermochemical plumes and implications for the origin of the Siberian traps. Lithos 100:66–92CrossRefGoogle Scholar
  7. Ernst RE (2014) Large igneous provinces. Cambridge University Press, New YorkCrossRefGoogle Scholar
  8. Ernst RE, Buchan KL (2003) Recognizing mantle plumes in the geological record. Ann Rev Earth Planet Sci 31:469–523CrossRefGoogle Scholar
  9. Ernst RE, Buchan KL, Desnoyers DW (2007) Plumes and plume clusters on Earth and Venus: evidence from large igneous provinces (LIPs). In: Yuen DA, Maruyama S, Karato S-i, Windley BF (eds) Superplumes: beyond plate tectonics. Springer, Dordrecht, pp 537–562CrossRefGoogle Scholar
  10. Hamilton VE, Stofan ER (1996) The geomorphology and evolution of Hecate Chasma, Venus. Icarus 121:171–194CrossRefGoogle Scholar
  11. Harder H, Christensen UR (1996) A one-plume model of Martian mantle convection. Nature 380:507–509Google Scholar
  12. Hansen VL, Olive A (2010) Artemis, Venus: the largest tectonomagmatic feature in the solar system? Geology 38:467–470. doi:10.1130/G30643.1CrossRefGoogle Scholar
  13. Head JW, Crumpler LS, Aubele JC, Guest JE, Saunders RS (1992) Venus volcanism: classification of volcanic features and structures, associations, and global distribution from Magellan data. J Geophys Res 97:13153–13197CrossRefGoogle Scholar
  14. Herrick RR (1999) Small mantle upwellings are pervasive on Venus and Earth. Geophys Res Lett 26:803–806CrossRefGoogle Scholar
  15. Ishida M, Maruyama S, Suetsugu D, Matsuzaka S, Eguchi T (1999) Superplume project: towards a new view of whole Earth dynamics. Earth Planet Space 51(1):1–5CrossRefGoogle Scholar
  16. Jellinek AM, Lenardic A, Manga M (2002) The influence of interior mantle temperature on the structure of plumes: heads for Venus, tails for the Earth. Geophys Res Lett 29:11. doi:10.1029/2001GL014624CrossRefGoogle Scholar
  17. Krassilnikov AS, Kostama V-P, Aittola M, Guseva EN, Cherkashina OS (2012) Relationship of coronae, regional plains and rift zones on Venus. Planet Space Sci 68:56–75CrossRefGoogle Scholar
  18. Li Q-S, Kiefer WS (2007) Mantle convection and magma production on present-day Mars: effects of temperature-dependent rheology. Geophys Res Lett 34: L16203Google Scholar
  19. Magee KP, Head JW (2001) Large flow fields on Venus: implications for plumes, rift associations, and resurfacing. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America special paper 352. Geological Society of America, Boulder, pp 81–101CrossRefGoogle Scholar
  20. Maruyama S, Yuen DA, Windley BF (2007) Dynamics of plumes and superplumes through time. In: Yuen DA, Maruyama S, Karato S-i, Windley BF (eds) Superplumes: beyond plate tectonics. Springer, Dordrecht, pp 441–502CrossRefGoogle Scholar
  21. Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: new results from finite frequency tomography. Geochem Geophys Geosyst 7(Q11007):69. doi:10.1029/2006GC001248Google Scholar
  22. Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43CrossRefGoogle Scholar
  23. Roberts JH, Zhong SJ (2004) Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars. J Geophys Res 109:E03009 doi:10.1029/2003JE002226Google Scholar
  24. Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and planets. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Schubert G, Masters G, Olson P, Tackley P (2004) Superplumes or plume clusters? Phys Earth Planet Inter 146:147–162CrossRefGoogle Scholar
  26. Şengör AMC (2001) Elevation as indicator of mantle-plume activity. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time. Geological Society of America special paper 352. Geological Society of America, Boulder, pp 183–225CrossRefGoogle Scholar
  27. Senske DA, Schaber GG, Stofan ER (1992) Regional topographic rises on Venus: geology of Western Eistla Regio and comparison to Beta Regio and Atla Regio. J Geophys Res 97:13395–13420CrossRefGoogle Scholar
  28. Smrekar SE, Sotin C (2012) Constraints on mantle plumes on Venus: implications for volatile history. Icarus 217:510–523Google Scholar
  29. Sobolev SV, Sobolev AV, Kuzmin DR, Krivolutskaya NA, Petrunin AG, Arndt NT, Radko VA, Vasiliev YR (2011) Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477:312–316. doi:10.1038/nature10385CrossRefGoogle Scholar
  30. Stofan ER, Smrekar SE (2005) Large topographic rises, coronae, large flow fields, and large volcanoes on Venus: evidence for mantle plumes? In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geological Society of America special paper 388. Geological Society of America, Boulder, pp 841–861CrossRefGoogle Scholar
  31. Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010) Diamonds sampled by plumes from the core-mantle boundary. Nature 466:352–355. doi:10.1038/nature09216CrossRefGoogle Scholar
  32. Wilson JT (1963) A possible origin of the Hawaiian Islands. Can J Earth Sci 41:863–870Google Scholar
  33. Yuen DA, Maruyama S, Karato S-i, Windley BR (eds) (2007) Superplumes: beyond plate tectonics. Springer, DordrechtGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Earth SciencesCarleton UniversityOttawaCanada