Glial Cells

Reference work entry

Abstract

In the human brain glial cells are as abundant as neurons. The relative number of glial cells has increased with increasing complexity of brains during evolution. In vertebrates three types of glial cells can be distinguished in the central nervous system, namely astrocytes, oligodendrocytes and microglia. In the peripheral nervous system the Schwann cell is the only glial cell type. Astrocytes are a heterogeneous cell population, are most abundant and fulfill different tasks such as providing guiding structures during development, controlling homeostasis of the extracellular space, providing energy substrate for neurons, controlling blood flow and modulating synaptic transmission. Oligodendrocytes in the central and Schwann cells in the peripheral nervous system form myelin and thereby enable a high conduction velocity within the axons. Microglial cells are the immune competent cells of the brain and are activated during any pathologic process. The activated microglial cells can release many factors which influence the pathologic process. Taken together brain function is only possible by a concerted action of neurons and glial cells.

Keywords

Dopamine Retina Pyruvate Histamine Glutamine 

Further Reading

  1. Alzheimer A (1910) Beiträge zur Kenntnis der pathologischen Neuroglia und ihrer Beziehungen zu den Abbauvorgängen im Nervengewebe. In: Nissl F, Alzheimer A (eds) Histologische und histopathologische Arbeiten über die Grosshirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten. Jena, Gustav Fischer, pp 401–562Google Scholar
  2. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927PubMedGoogle Scholar
  3. Bunge MB (1968) Glial cells and the central myelin sheath. Physiol Rev 48:197–210PubMedGoogle Scholar
  4. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330:779–782PubMedCrossRefGoogle Scholar
  5. Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231PubMedCrossRefGoogle Scholar
  6. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9:839–855PubMedCrossRefGoogle Scholar
  7. Golgi C (1883) Generalità sul sistema nervoso ed istologia del tessuto nervoso. Vallardi, MilanoGoogle Scholar
  8. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355PubMedCrossRefGoogle Scholar
  9. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238PubMedCrossRefGoogle Scholar
  10. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394PubMedCrossRefGoogle Scholar
  11. Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211PubMedCrossRefGoogle Scholar
  12. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682PubMedCrossRefGoogle Scholar
  13. Kettenmann H, Ransom BR (2005a) The concept of neuroglia: a historical perspective. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 1–16Google Scholar
  14. Kettenmann H, Ransom BR (2005b) Neuroglia. Oxford University Press, New YorkGoogle Scholar
  15. Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659PubMedCrossRefGoogle Scholar
  16. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2010) Physiology of microglia. Physiol Rev 91:461–553CrossRefGoogle Scholar
  17. Matyash V, Kettenmann H (2010) Heterogeneity in astrocyte morphology and physiology. Brain Res Rev 63:2–10PubMedCrossRefGoogle Scholar
  18. Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467PubMedCrossRefGoogle Scholar
  19. Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11:275–283PubMedCrossRefGoogle Scholar
  20. Nave KA, Trapp BD (2008) Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 31:535–561PubMedCrossRefGoogle Scholar
  21. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92PubMedCrossRefGoogle Scholar
  22. Rechenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New YorkGoogle Scholar
  23. Remahl S, Hildebrand C (1990) Relation between axons and oligodendroglial cells during initial myelination. J Neurocytol 19:313–328PubMedCrossRefGoogle Scholar
  24. Shepherd GM (1988) Neurobiology, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  25. Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6:683–690PubMedCrossRefGoogle Scholar
  26. Simons M, Trajkovic K (2006) Neuron-glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci 119:4381–4389PubMedCrossRefGoogle Scholar
  27. Verkhratsky A (2009) Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf) 195:111–122CrossRefGoogle Scholar
  28. Verkhratsky A, Butt A (2007) Glial Neurobiology. A textbook. Wiley, ChichesterCrossRefGoogle Scholar
  29. Verkhratsky A, Kirchhoff F (2007) Glutamate-mediated neuronal-glial transmission. J Anat 210(6):651–660PubMedCrossRefGoogle Scholar
  30. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141PubMedGoogle Scholar
  31. Verkhratsky A, Parpura V, Rodriguez JJ (2010) Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”. Brain Res Rev 66(1–2):133–151PubMedGoogle Scholar
  32. Virchow R (1858) Die Cellularpathologie. August Hirschwald, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Max-Delbrück-Center for Molecular Medicine, Cellular NeurosciencesBerlinGermany
  2. 2.Faculty of Life SciencesUniversity of ManchesterManchesterUK

Personalised recommendations