Skip to main content

Perturbation Theory in Celestial Mechanics

  • Reference work entry
  • 385 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Classical Perturbation Theory

Resonant Perturbation Theory

Invariant Tori

Periodic Orbits

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

KAM theory:

Provides the persistence of quasi‐periodic motions under a small perturbation of an integrable system. KAM theory can be applied under quite general assumptions, i. e. a non‐degeneracy of the integrable system and a diophantine condition of the frequency of motion. It yields a constructive algorithm to evaluate the strength of the perturbation ensuring the existence of invariant tori.

Perturbation theory:

Provides an approximate solution of the equations of motion of a nearly‐integrable system.

Spin‐orbit problem:

A model composed of a rigid satellite rotating about an internal axis and orbiting around a central point‐mass planet; a spin‐orbit resonance means that the ratio between the revolutional and rotational periods is rational.

Three‐body problem:

A system composed by three celestial bodies (e. g. Sun‐planet‐satellite) assumed to be point‐masses subject to the mutual gravitational attraction. The restricted three‐body problem assumes that the mass of one of the bodies is so small that it can be neglected.

Bibliography

  1. Andoyer H (1926) Mécanique Céleste. Gauthier-Villars, Paris

    MATH  Google Scholar 

  2. Arnold VI (1963) Small denominators and problems of stability of motion in classical and celestial mechanics. Uspehi Mat Nauk 6 18(114):91–192

    Google Scholar 

  3. Arnold VI (1978) Mathematical methods of classical mechanics. Springer, Berlin

    MATH  Google Scholar 

  4. Arnold VI (ed) (1988) Encyclopedia of Mathematical Sciences. Dynamical Systems III. Springer, Berlin

    Google Scholar 

  5. Benettin G, Fasso F, Guzzo M (1998) Nekhoroshev‐stability of L 4 and L 5 in the spatial restricted three-body problem. Regul Chaotic Dyn 3(3):56–71

    Article  MathSciNet  MATH  Google Scholar 

  6. Boccaletti D, Pucacco G (2001) Theory of orbits. Springer, Berlin

    Google Scholar 

  7. Brouwer D, Clemence G (1961) Methods of Celestial Mechanics. Academic Press, New York

    Google Scholar 

  8. Celletti A (1990) Analysis of resonances in the spin-orbit problem. In: Celestial Mechanics: The synchronous resonance (Part I). J Appl Math Phys (ZAMP) 41:174–204

    Article  MathSciNet  MATH  Google Scholar 

  9. Celletti A (1993) Construction of librational invariant tori in the spin-orbit problem. J Appl Math Phys (ZAMP) 45:61–80

    MathSciNet  Google Scholar 

  10. Celletti A, Chierchia L (1998) Construction of stable periodic orbits for the spin-orbit problem of Celestial Mechanics. Regul Chaotic Dyn (Editorial URSS) 3:107–121

    Article  MathSciNet  MATH  Google Scholar 

  11. Celletti A, Chierchia L (2006) KAM tori for N-body problems: a brief history. Celest Mech Dyn Astron 95 1:117–139

    Article  MathSciNet  MATH  Google Scholar 

  12. Celletti A, Chierchia L (2007) KAM Stability and Celestial Mechanics. Mem Am Math Soc 187:878

    MathSciNet  Google Scholar 

  13. Celletti A, Giorgilli A (1991) On the stability of the Lagrangian points in the spatial restricted problem of three bodies. Celest Mech Dyn Astron 50:31–58

    Article  MathSciNet  MATH  Google Scholar 

  14. Chebotarev AG (1967) Analytical and Numerical Methods of Celestial Mechanics. Elsevier, New York

    MATH  Google Scholar 

  15. Chierchia L, Gallavotti G (1994) Drift and diffusion in phase space. Ann l'Inst H Poincaré 60:1–144

    Google Scholar 

  16. Delaunay C (1867) Mémoire sur la théorie de la Lune. Mém l'Acad Sci 28:29 (1860)

    Google Scholar 

  17. Deprit A (1967) Free rotation of a rigid body studied in the phase space. Am J Phys 35:424–428

    Article  Google Scholar 

  18. Efthymiopoulos C, Sandor Z (2005) Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co‐orbital motion. MNRAS 364(6):253–271

    Article  Google Scholar 

  19. Féjoz J (2004) Démonstration du “théorème d'Arnold” sur la stabilité du système planétaire (d'après Michael Herman). Ergod Th Dynam Syst 24:1–62

    Google Scholar 

  20. Ferraz-Mello S (2007) Canonical Perturbation Theories. Springer, Berlin

    MATH  Google Scholar 

  21. Gabern F, Jorba A, Locatelli U (2005) On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearity 18:1705–1734

    Article  MathSciNet  MATH  Google Scholar 

  22. Giorgilli A, Skokos C (1997) On the stability of the trojan asteroids. Astron Astroph 317:254–261

    Google Scholar 

  23. Giorgilli A, Delshams A, Fontich E, Galgani L, Simó C (1989) Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem. J Diff Eq 77:167–198

    Google Scholar 

  24. Hagihara Y (1970) Celestial Mechanics. MIT Press, Cambridge

    MATH  Google Scholar 

  25. Hénon M (1966) Explorationes numérique du problème restreint IV: Masses egales, orbites non periodique. Bull Astron 3(1, fasc 2):49–66

    Google Scholar 

  26. Kolmogorov AN (1954) On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl Akad Nauk SSR 98:527–530

    MathSciNet  MATH  Google Scholar 

  27. Laskar J, Robutel P (1995) Stability of the planetary three-body problem I Expansion of the planetary Hamiltonian. Celest Mech and Dyn Astron 62(3):193–217

    Article  MathSciNet  MATH  Google Scholar 

  28. Lhotka Ch, Efthymiopoulos C, Dvorak R (2008) Nekhoroshev stability at L 4 or L 5 in the elliptic restricted three body problem‐application to Trojan asteroids. MNRAS 384:1165–1177

    Article  Google Scholar 

  29. Locatelli U, Giorgilli A (2000) Invariant tori in the secular motions of the three-body planetary systems. Celest Mech and Dyn Astron 78:47–74

    Article  MathSciNet  MATH  Google Scholar 

  30. Locatelli U, Giorgilli A (2005) Construction of the Kolmogorov's normal form for a planetary system. Regul Chaotic Dyn 10:153–171

    Article  MathSciNet  MATH  Google Scholar 

  31. Locatelli U, Giorgilli A (2007) Invariant tori in the Sun–Jupiter–Saturn system. Discret Contin Dyn Syst-Ser B 7:377–398

    Article  MathSciNet  MATH  Google Scholar 

  32. Meyer KR, Hall GR (1991) Introduction to Hamiltonian dynamical systems and the N‑body problem. Springer, Berlin

    Google Scholar 

  33. Moser J (1962) On invariant curves of area‐preserving mappings of an annulus. Nach Akad Wiss Göttingen. Math Phys Kl II 1:1

    Google Scholar 

  34. Poincarè H (1892) Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars, Paris

    Google Scholar 

  35. Robutel P (1995) Stability of the planetary three-body problem II KAM theory and existence of quasi‐periodic motions. Celest Mech Dyn Astron 62(3):219–261

    Article  MathSciNet  MATH  Google Scholar 

  36. Robutel P, Gabern F (2006) The resonant structure of Jupiter's Trojan asteroids – I Long-term stability and diffusion. MNRAS 372(4):1463–1482

    Article  Google Scholar 

  37. Sanders JA, Verhulst F (1985) Averaging methods in nonlinear dynamical systems. Springer, Berlin

    MATH  Google Scholar 

  38. Siegel CL, Moser JK (1971) Lectures on Celestial Mechanics. Springer, Heidelberg

    Book  MATH  Google Scholar 

  39. Szebehely V (1967) Theory of orbits. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Celletti, A. (2012). Perturbation Theory in Celestial Mechanics . In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_80

Download citation

Publish with us

Policies and ethics