Skip to main content

Article Outline

Glossary

Definition of the Subject

Introduction

Exponential Stability of Constant Frequency Systems

Nekhoroshev Theory (Global Stability)

Applications

Future Directions

Appendix: An Example of Divergence Without Small Denominators

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Quasi integrable Hamiltonian:

A Hamiltonian is quasi integrable if it is close to another Hamiltonian whose associated system is integrable by quadrature. Here, we will consider real analytic Hamiltonians on a domain \({\mathcal{D}}\) which admit a holomorphic extension on a complex strip \({\mathcal{D}_\mathbb{C}}\) around \({\mathcal{D}}\) and the closeness to the integrable Hamiltonian is measured with the supremum norm \({\vert\vert .\vert\vert_\infty}\) over \({\mathcal{D}_\mathbb{C}}\).

Exponentially stable Hamiltonian:

An integrable Hamiltonian governs a system which admits a collection of first integral. We say that an integrable Hamiltonian h is exponentially stable if for any small enough Hamiltonian perturbation of h, the solutions of the perturbed system are at least defined over timescales which are exponentially long with respect to the inverse of the size of the perturbation. Moreover, the first integrals of the integrable system should remain nearly constant along the solutions of the perturbed system over the same amount of time.

Nekhoroshev theorem (1977):

There exists a generic set of real analytic integrable Hamiltonians which are exponential stable.

Bibliography

Primary Literature

  1. Arnold VI (1964) Instability of dynamical systems with several degrees of freedom. Sov Math Dokl 5:581–585

    Google Scholar 

  2. Arnold VI, Kozlov VV, Neishtadt AI (2006) Mathematical aspects of classical and celestial mechanics, 3rd revised edn. In: Encyclopaedia of Mathematical Sciences 3. Dynamical Systems 3. Springer, New York

    Google Scholar 

  3. Bambusi D (1999) Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Math Z 230(2):345–387

    Article  MathSciNet  MATH  Google Scholar 

  4. Bambusi D (1999) On long time stability in Hamiltonian perturbations of non‐resonant linear PDEs. Nonlinearity 12(4):823–850

    Article  MathSciNet  MATH  Google Scholar 

  5. Bambusi D, Giorgilli A (1993) Exponential stability of states close to resonance in infinite‐dimensional Hamiltonian systems. J Stat Phys 71(3–4):569–606

    Article  MathSciNet  MATH  Google Scholar 

  6. Bambusi D, Grébert B (2006) Birkhoff normal form for partial differential equations with tame modulus. Duke Math J 135(3):507–567

    Google Scholar 

  7. Bambusi D, Nekhoroshev NN (2002) Long time stability in perturbations of completely resonant PDE's. Acta Appl Math 70(1–3):1–22

    Article  MathSciNet  MATH  Google Scholar 

  8. Benettin G (2005) Physical applications of Nekhoroshev theorem and exponential estimates. In: Giorgilli A (ed) Cetraro (2000) Hamiltonian Dynamics, Theory and Applications. Springer, New York

    Google Scholar 

  9. Benettin G, Fasso F (1996) Fast rotations of the rigid body: A study by Hamiltonian perturbation theory, I. Nonlinearity 9(1):137–186

    Article  MathSciNet  MATH  Google Scholar 

  10. Benettin G, Fasso F, Guzzo M (1998) Nekhorochev stability of L4 and L5 in the spatial restricted three body problem. Regul Chaotic Dyn 3(3):56–72

    Article  MathSciNet  MATH  Google Scholar 

  11. Benettin G, Fröhlich J, Giorgilli A (1988) A Nekhoroshev‐type theorem for Hamiltonian systems with infinitely many degrees of freedom. Commun Math Phys 119(1):95–108

    Google Scholar 

  12. Benettin G, Galgani L, Giorgilli A (1985) A proof of Nekhorochev's theorem for the stability times in nearly‐integrable Hamiltonian systems. Celest Mech 37:1–25

    Article  MathSciNet  MATH  Google Scholar 

  13. Benettin G, Gallavotti G (1986) Stability of motions near resonances in quasi‐integrable Hamiltonian systems. J Stat Phys 44(3–4):293–338

    Article  MathSciNet  MATH  Google Scholar 

  14. Benettin G, Giorgilli A (1994) On the Hamiltonian interpolation of near-to-the‐identity symplectic mappings with application to symplectic integration algorithms. J Stat Phys 74(5–6):1117–1143

    Article  MathSciNet  MATH  Google Scholar 

  15. Benettin G, Sempio P (1994) Adiabatic invariants and trapping of a point charge in a strong non‐uniform magnetic field. Nonlinearity 7(1):281–303

    Article  MathSciNet  MATH  Google Scholar 

  16. Blaom AD (2001) A geometric setting for Hamiltonian perturbation theory. Mem Am Math Soc 727(xviii):112

    MathSciNet  Google Scholar 

  17. Bogolyubov NN, Mitropol'skij YA (1958) Asymptotic Methods in the Theory of Nonlinear Oscillations, 2nd edn. Nauka, Moscow. Engl. Transl. (1961) Gordon and Breach, New York

    MATH  Google Scholar 

  18. Bourgain J (2004) Remarks on stability and diffusion in high‐dimensional Hamiltonian systems and partial differential equations. Ergod Theory Dyn Syst 24(5):1331–1357

    Article  MathSciNet  MATH  Google Scholar 

  19. Carati A, Galgani L, Giorgilli A, Ponno A (2002) The Fermi–Pasta–Ulam Problem. Nuovo Cimento B 117:1017–1026

    Google Scholar 

  20. Carati A, Galgani L, Giorgilli A (2006) Dynamical Systems and Thermodynamics. In: Françoise JP, Naber GL, Tsun TS (eds) Encyclopedia of mathematical physics. Elsevier, Amsterdam

    Google Scholar 

  21. Celletti A, Giorgilli A (1991) On the stability of the Lagrangian points in the spatial restricted problem of three bodies. Celest Mech Dyn Astron 50(1):31–58

    Article  MathSciNet  MATH  Google Scholar 

  22. Chirikov BV (1979) A universal instability in many dimensional oscillator systems. Phys Rep 52:263–279

    Article  MathSciNet  Google Scholar 

  23. Delshams A, Gutierrez P (1996) Effective Stability and KAM Theory. J Diff Eq 128(2):415–490

    Article  MathSciNet  MATH  Google Scholar 

  24. Dullin H, Fassò F (2004) An algorithm for detecting directional quasi‐convexity. BIT 44(3):571–584

    Google Scholar 

  25. Dumas HS (1993) A Nekhoroshev‐like theory of classical particle channeling in perfect crystals. In: Jones CKRT et al (ed) Dynamics reported. Expositions in dynamical systems, new series, vol 2. Springer, Berlin

    Google Scholar 

  26. Dumas HS (2005) Mathematical theories of classical particle channeling in perfect crystals. Nucl Inst Meth Phys Res Sect B (Beam Interactions with Materials and Atoms) 234(1–2):3–13

    Google Scholar 

  27. Efthymiopoulos C, Giorgilli A, Contopoulos G (2004) Nonconvergence of formal integrals. II: Improved estimates for the optimal order of truncation. J Phys A (Math Gen) 37(45):10831–10858

    Article  MathSciNet  MATH  Google Scholar 

  28. Fassò F, Guzzo M, Benettin G (1998) Nekhoroshev‐stability of elliptic equilibria of Hamiltonian systems. Commun Math Phys 197(2):347–360

    Google Scholar 

  29. Fassò F, Lewis D (2001) Stability properties of the Riemann ellipsoids. Arch Ration Mech Anal 158(4):259–292

    Google Scholar 

  30. Giorgilli A (1998) On the problem of stability for near to integrable Hamiltonian systems. In: Proceedings of the International Congress of Mathematicians Berlin 1998. Documenta Mathematica III:143–152

    MathSciNet  Google Scholar 

  31. Giorgilli A, Delshams A, Fontich E, Galgani L, Simó C (1989) Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three bodies problem. J Diff Equa 77:167–198

    Google Scholar 

  32. Giorgilli A, Morbidelli A (1997) Invariant KAM tori and global stability for Hamiltonian systems. Z Angew Math Phys 48(1):102–134

    Article  MathSciNet  MATH  Google Scholar 

  33. Giorgilli A, Skokos C (1997) On the stability of the Trojan asteroids. Astron Astroph 317:254–261

    Google Scholar 

  34. Giorgilli A, Zehnder E (1992) Exponential stability for time dependent potential. ZAMP 43:827–855

    Article  MathSciNet  MATH  Google Scholar 

  35. Gramchev T, Popov G (1995) Nekhoroshev type estimates for billiard ball maps. Ann Inst Fourier 45(3):859–895

    Article  MathSciNet  Google Scholar 

  36. Guzzo M (2003) Nekhoroshev stability of asteroids. Triennal report 2000–2003 of Commission 7‑Celestial Mechanics and dynamical Astronomy of the IAU; Reports on Astronomy, 1999–2002. Transactions of the International Astronomical Union, vol XXVA, Astronomical Society of the Pacific

    Google Scholar 

  37. Guzzo M (2004) A direct proof of the Nekhoroshev theorem for nearly integrable symplectic maps. Ann Henri Poincaré 5(6):1013–1039

    Article  MathSciNet  MATH  Google Scholar 

  38. Guzzo M, Benettin G (2001) A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discret Contin Dyn Syst Ser B 1(1):1–28

    Article  MathSciNet  MATH  Google Scholar 

  39. Guzzo M, Lega E, Froeschlé C (2006) Diffusion and stability in perturbed non‐convex integrable systems. Nonlinearity 19(5):1049–1067

    Google Scholar 

  40. Guzzo M, Morbidelli A (1997) Construction of a Nekhoroshev‐like result for the asteroid belt dynamical system Celest. Mech Dyn Astron 66:255–292

    Article  MathSciNet  MATH  Google Scholar 

  41. Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration. Structure‐preserving algorithms for ordinary differential equations, 2nd edn. Springer Series in Computational Mathematics, vol 31. Springer, New York

    Google Scholar 

  42. Ilyashenko IS (1986) A steepness test for analytic functions. Russ Math Surv 41:229–230

    Article  MathSciNet  Google Scholar 

  43. Kuksin S, Pöschel J (1994) On the inclusion of analytic symplectic maps in analytic Hamiltonian flows and its applications. In: Kuksin S, Lazutkin VF, Pöschel J (eds) Proceedings of the 1991 Euler Institute Conference on Dynamical Systems. Prog NonLin Diff Equ App (12) Birkhäuser, Basel

    Google Scholar 

  44. Kuksin SB (2006) Hamiltonian PDEs (with an appendix by Dario Bambusi). In: Hasselblatt B (ed) Handbook of dynamical systems, vol 1B. Elsevier, Amsterdam

    Google Scholar 

  45. Littlewood JE (1959) On the equilateral configuration in the restricted problem of the three bodies. Proc London Math Soc 9(3):343–372

    Article  MathSciNet  Google Scholar 

  46. Lochak P (1992) Canonical perturbation theory via simultaneous approximation. Russ Math Surv 47:57–133

    Article  MathSciNet  Google Scholar 

  47. Lochak P (1993) Hamiltonian perturbation theory: Periodic orbits, resonances and intermittency. Nonlinearity 6(6):885–904

    Article  MathSciNet  MATH  Google Scholar 

  48. Lochak P (1995) Stability of Hamiltonian systems over exponentially long times: the near‐linear case. In: Dumas HS, Meyer K, Schmidt D (eds) Hamiltonian dynamical systems – History, theory and applications. IMA conference proceedings series, vol 63. Springer, New York, pp 221–229

    Chapter  Google Scholar 

  49. Lochak P, Meunier C (1988) Multiphase averaging methods for Hamiltonian systems. Appl Math Sci Series, vol 72. Springer, New York

    Google Scholar 

  50. Lochak P, Neishtadt AI (1992) Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. Chaos 2(4):495–499

    Article  MathSciNet  MATH  Google Scholar 

  51. Lochak P, Neishtadt AI, Niederman L (1994) Stability of nearly integrable convex Hamiltonian systems over exponentially long times. In: Kuksin S, Lazutkin VF, Pöschel J (eds) Proceedings of the 1991 Euler Institute Conference on Dynamical Systems. Prog NonLin Diff Equ App (12). Birkhäuser, Basel

    Google Scholar 

  52. Marco JP, Lochak P (2005) Diffusion times and stability exponents for nearly integrable analytic systems. Central Eur J Math 3(3):342–397

    Article  MathSciNet  MATH  Google Scholar 

  53. Marco JP, Sauzin D (2003) Stability and instability for Gevrey quasi‐convex near‐integrable Hamiltonian Systems. Publ Math Inst Hautes Etudes Sci 96:199–275

    Article  MathSciNet  Google Scholar 

  54. Meyer KR, Hall GR (1992) Introduction to Hamiltonian dynamical systems and the N-Body problem. Applied Mathematical Sciences, vol 90. Springer, New York

    Google Scholar 

  55. Moan PC (2004) On the KAM and Nekhoroshev theorems for symplectic integrators and implications for error growth. Nonlinearity 17(1):67–83

    Article  MathSciNet  MATH  Google Scholar 

  56. Morbidelli A, Giorgilli A (1995) Superexponential stability of KAM tori. J Stat Phys 78:1607–1617

    Article  MathSciNet  MATH  Google Scholar 

  57. Morbidelli A, Guzzo M (1997) The Nekhoroshev theorem and the asteroid belt dynamical system. Celest Mech Dyn Astron 65(1–2):107–136

    Article  MathSciNet  MATH  Google Scholar 

  58. Moser J (1955) Stabilitätsverhalten Kanonisher Differentialgleichungssysteme. Nachr Akad Wiss Göttingen, Math Phys Kl IIa 6:87–120

    Google Scholar 

  59. Neishtadt AI (1981) On the accuracy of conservation of the adiabatic invariant. Prikl Mat Mekh 45:80–87. Translated in J Appl Math Mech 45:58–63

    Google Scholar 

  60. Neishtadt AI (1984) The separation of motions in systems with rapidly rotating phase. J Appl Math Mech 48:133–139

    Article  MathSciNet  Google Scholar 

  61. Nekhorochev NN (1973) Stable lower estimates for smooth mappings and for gradients of smooth functions. Math. USSR Sb 19(3):425–467

    Article  Google Scholar 

  62. Nekhorochev NN (1977) An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russ Math Surv 32:1–65

    Article  Google Scholar 

  63. Nekhorochev NN (1979) An exponential estimate of the time of stability of nearly integrable Hamiltonian systems 2. Trudy Sem Petrovs 5:5–50. Translated In: Oleinik OA (ed) Topics in Modern Mathematics. Petrovskii Semin, vol 5. Consultant Bureau, New York

    Google Scholar 

  64. Niederman L (1996) Stability over exponentially long times in the planetary problem. Nonlinearity 9(6):1703–1751

    Article  MathSciNet  MATH  Google Scholar 

  65. Niederman L (1998) Nonlinear stability around an elliptic equilibrium point in an Hamiltonian system. Nonlinearity 11:1465–1479

    Article  MathSciNet  MATH  Google Scholar 

  66. Niederman L (2004) Exponential stability for small perturbations of steep integrable Hamiltonian systems. Erg Theor Dyn Syst 24(2):593–608

    Article  MathSciNet  MATH  Google Scholar 

  67. Niederman L (2006) Hamiltonian stability and subanalytic geometry. Ann Inst Fourier 56(3):795–813

    Article  MathSciNet  MATH  Google Scholar 

  68. Niederman L (2007) Prevalence of exponential stability among nearly integrable Hamiltonian systems. Erg Theor Dyn Syst 27(3):905–928

    Article  MathSciNet  MATH  Google Scholar 

  69. Northrop TG (1963) The adiabatic motion of charged particles. Interscience Publishers, New York

    MATH  Google Scholar 

  70. Poincaré H (1892) Méthodes Nouvelles de la Mécanique Céleste, vol 4. Blanchard, Paris

    Google Scholar 

  71. Pöschel J (1993) Nekhorochev estimates for quasi‐convex Hamiltonian systems. Math Z 213:187–217

    Google Scholar 

  72. Pöschel J (1999) On Nekhoroshev's estimate at an elliptic equilibrium. Int Math Res Not 1999(4):203–215

    Google Scholar 

  73. Ramis JP, Schäfke R (1996) Gevrey separation of fast and slow variables. Nonlinearity 9(2):353–384

    Google Scholar 

  74. Steichen D, Giorgilli A (1998) Long time stability for the main problem of artificial satellites. Cel Mech 69:317–330

    MathSciNet  MATH  Google Scholar 

  75. Treschev DV (1994) Continuous averaging in Hamiltonian systems. In: Kuksin S, Lazutkin VF, Pöschel J (eds) Proceedings of the 1991 Euler Institute Conference on Dynamical Systems. Prog NonLin Diff Equ App (12). Birkhäuser, Basel

    Google Scholar 

  76. Valdinoci E (2000) Estimates for non‐resonant normal forms in Hamiltonian perturbation theory. J Stat Phys 101(3–4):905–919

    Article  MathSciNet  MATH  Google Scholar 

Books and Reviews

  1. Arnold VI (1983) Geometrical methods in the theory of ordinary differential equations. Transl. from the Russian by Joseph Szuecs, Mark Levi (ed) Grundlehren der Mathematischen Wissenschaften 250. Springer, New York

    Google Scholar 

  2. Arnold VI, Kozlov VV, Neishtadt AI (2006) Mathematical aspects of classical and celestial mechanics, 3rd revised edn. Encyclopaedia of Mathematical Sciences 3. Dynamical Systems 3. Springer, New York

    Google Scholar 

  3. Benettin G (2005) Physical applications of Nekhoroshev theorem and exponential estimates. In: Giorgilli A (ed) Cetraro (2000) Hamiltonian Dynamics, Theory and Applications. Springer, New York

    Google Scholar 

  4. Giorgilli A (2003) Exponential stability of Hamiltonian systems. Dynamical systems, Part I. Hamiltonian systems and celestial mechanics. Selected papers from the Research Trimester held in Pisa, Italy, February 4–April 26, 2002. Pisa: Scuola Normale Superiore. Pubblicazioni del Centro di Ricerca Matematica Ennio de Giorgi. Proceedings, 87–198

    Google Scholar 

  5. Sanders JA, Verhulst F, Murdock J (2007) Averaging methods in nonlinear dynamical systems, 2nd edn. Applied Mathematical Sciences 59. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: An Example of Divergence Without Small Denominators

Appendix: An Example of Divergence Without Small Denominators

We would like to develop the following example of Neishtadt [60] where the phenomenons of divergence without small denominators and summation up to an exponentially small remainder appear in its simplest setting (see also [76] for another example).

Consider the quasi integrable system governed by the Hamiltonian

$$ \mathcal{H}(I_1,I_2;\theta_1,\theta_2)=I_1-\varepsilon[I_2 -\cos (\theta_1) f(\theta_2)]\\\text{defined over}\enskip \mathbb{R}^2\times\mathbb{T}^2\:, $$
(11)

with

$$ f(\theta)=\sum_{m\geq 1}\frac{\alpha_m}{m}\cos (m\theta)\:, $$

where \({\alpha_m =\text{e}^{-\alpha m}}\) for \({0<\alpha\leq 1}\), this last choice corresponds to the exponential decay of the Fourier coefficients for a holomorphic function.

Indeed, \({f^{\prime}(\theta)=\mathrm{Im}(g(-\alpha+i\theta))}\) where \( g(z)=(\exp (z)-1)^{-1}\) and the complex pole of f which is closest to the real axis is located at \({-i\alpha}\).

Conversely, all real function which admits a holomorphic extension over a complex strip of width α (i. e.: \({\vert\mathrm{Im}(z)\vert\leq\alpha}\)) has Fourier coefficients bounded by \({(C\alpha_m)_{m\in\mathbb{N}^*}}\) for some constant \({C > 0}\).

As in the Sect. “Hamiltonian Perturbation Theory”, it is possible to eliminate formally completely the fast angle θ1 in the perturbation without the occurrence of any small denominators.

Indeed, one can consider a normalizing transformation generated by \({X(\theta_1,\theta_2)=\sum_{n\geq 1}\varepsilon^n X_n (\theta_1,\theta_2)}\) where the functions X n satisfy the homological equations:

$$ \begin{aligned} \partial_{\theta_1}X_1(\theta_1,\theta_2) &= \cos (\theta_1) f(\theta_2)\enskip\text{and}\\ \partial_{\theta_1} X_n(\theta_1,\theta_2) &=\partial_{\theta_2}X_{n-1}(\theta_1,\theta_2)\:. \end{aligned}$$

The solutions can be written \( X_n(\theta_1,\theta_2) = \cos(\theta_1- n\frac{\pi}{2}) f^{(n-1)}(\theta_2) \), hence:

$$ X\left(\theta_1,\theta_2\right) = \sum_{n\in\mathbb{N}^*}\varepsilon^n\sum_{m \in\mathbb{N}^*}\frac{\alpha_m}{m^2}m^n\\\cdot\cos\left(\theta_1-n\frac{\pi}{2}\right) \sin\left(m\theta_2+n\frac{\pi}{2}\right) $$

and, for instance,

$$ X\left(\frac{\pi}{2},0\right) = \sum_{m\in\mathbb{N}^*}\sum_{k\in\mathbb{N}} \frac{\text{e}^{-\alpha m}}{m^2}(\varepsilon m)^{2k+1}$$

which is divergent for all \({\varepsilon > 0}\) since \({\varepsilon\geq 1/m}\) for m large enough.

We see that divergence comes from coefficients arising with successive differentiations.

On the other hand, if one considers the transformation generated by the truncated Hamiltonian \( \sum\nolimits_{n\geq 1}^N\varepsilon^n X_n (\theta_1,\theta_2) \) then the transformed Hamiltonian becomes

$$ \mathcal{H}(I_1,I_2;\theta_1,\theta_2)=I_1-\varepsilon I_2 + \varepsilon^{N+1}\partial_{\theta_2}X_N (\theta_1,\theta_2)\:, $$

where \({\partial_{\theta_2}X_N (\theta_1,\theta_2) = \cos\left(\theta_1-N\frac{\pi}{2}\right) f^{(N)}(\theta_2)}\).

Especially, with \({g(z)={1}/{\exp (z)-1}}\), we have:

$$ \partial_{\theta_2}X_{2N} (\theta_1,\theta_2) = -\cos(\theta_1) \mathrm{Re}\left(g^{(2N-1)}(-\alpha +i\theta_2)\right) \\\shoveright{\qquad\text{for}\enskip N > 0\:,} \\ \partial_{\theta_2}X_{2N+1}(\theta_1,\theta_2) = \sin(\theta_1) \mathrm{Im}\left(g^{(2N)}(-\alpha +i\theta_2)\right)\\\qquad \text{for}\enskip N\geq 0\:. $$

Now, around the real axis, the main term in the asymptotic expansion of \({g^{(n)}(z)}\) as n goes to infinity is given by the derivative of the polar term \({1/z}\) in the Laurent expansion of g at 0.

Indeed, we consider the function \({h(z)=g(z)-1/z}\) which is real analytic and admits an analyticity width of size \({2\pi}\) around the real axis. Hence, Cauchy estimates ensure that for n large enough and z in the strip of width π around the real axis, the derivative \({h^{(n)}(z)}\) becomes negligible with respect to the derivative of \({1/z}\).

Consequently, \({g^{(n)}(z)}\) is equivalent to \({(-1)^n n!/z^{n+1}}\) as n goes to infinity for z in the strip of width π around the real axis.

Hence, the remainder \({\partial_{\theta_2}X_N (\theta_1,\theta_2)}\) has a size of order \({{(N-1)!}/{\alpha^N}}\) for N large. This latter estimate cannot be improved, since \({\partial_{\theta_2}X_{2N}(\pi, 0)}\) and \( \partial_{\theta_2}X_{2N+1}({\pi}/{2},\alpha\tan({\pi}/{4N+2})) \) admit the same size of order \({(N-1)!}/{\alpha^N}\) for N large.

Now, we can make a “summation at the smallest term” as in Sect. “The Case of a Single Frequency System” to obtain an optimal normalization with an exponentially small remainder.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Niederman, L. (2012). Nekhoroshev Theory. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_62

Download citation

Publish with us

Policies and ethics