Skip to main content

Article Outline

Glossary

Definition of the Subject

Introduction

Joinings of Two or More Dynamical Systems

Self-Joinings

Some Applications and Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An introduction to finite‐rank transformations can be found e. g. in [32]; we also refer the reader to the quite complete survey [12].

Abbreviations

Disjoint measure‐preserving systems:

The two measure‐preserving dynamical systems \({(X,\mathcal{A},\mu,T)}\) and \( (Y,\mathcal{B},\nu,S) \) are said to be disjoint if their only joining is the product measure \({\mu\otimes\nu}\).

Joining:

Let I be a finite or countable set, and for each \({i\in I}\), let \({\left(X_i,\mathcal{A}_i,\mu_i,T_i\right)}\) be a measure‐preserving dynamical system. A joining of these systems is a probability measure on the Cartesian product \({\prod_{i\in I} X_i}\), which has the μ i 's as marginals, and which is invariant under the product transformation \({\bigotimes_{i\in I} T_i}\).

Marginal of a probability measure on a product space:

Let λ be a probability measure on the Cartesian product of a finite or countable collection of measurable spaces \({\left(\prod_{i\in I}X_i,\bigotimes_{i\in I}\mathcal{A}_i\right)}\), and let \({J= \{ j_1, \dots ,j_k \}}\) be a finite subset of I. The k‑fold marginal of λ on \({X_{j_1}, \dots ,X_{j_k}}\) is the probability measure μ defined by:

$$ \begin{aligned} &\forall A_1\in \mathcal{A}_{j_1}, \dots , A_k\in \mathcal{A}_{j_k}\:,\\ &\kern-1pt\mu(A_1\times\cdots\times A_k) \mathrel{\mathop:}= \lambda\left(A_1\times\cdots\times A_k\times\prod_{i\in I\setminus J}X_i \right)\:. \end{aligned}$$
Markov intertwining:

Let \({(X,\mathcal{A},\mu,T)}\) and \({(Y,\mathcal{B},\nu,S)}\) be two measure‐preserving dynamical systems. We call Markov intertwining of T and S any operator \({P\colon\ L^2(X,\mu)\to L^2(Y,\nu)}\) enjoying the following properties:

  • \({P U_T = U_S P}\), where U T and U S are the unitary operators on \({L^2(X,\mu)}\) and \({L^2(Y,\nu)}\) associated respectively to T and S (i. e. \({U_Tf(x)=f(Tx)}\), and \({U_Sg(y)=g(Sy)}\)).

  • \({P \mathbb{1}_X=\mathbb{1}_{Y}}\),

  • \({f\ge0}\) implies \({P f\ge0}\), and \({g\ge0}\) implies \({P^* g\ge0}\), where \({P^*}\) is the adjoint operator of P.

Minimal self‐joinings:

Let \({k\ge2}\) be an integer. The ergodic measure‐preserving dynamical system T has k‑fold minimal self‐joinings if, for any ergodic joining λ of k copies of T, we can partition the set \({\{1, \dots ,k\}}\) of coordinates into subsets \({J_1, \dots ,J_\ell}\) such that

  1. 1.

    For j 1 and j 2 belonging to the same J i , the marginal of λ on the coordinates j 1 and j 2 is supported on the graph of T n for some integer n (depending on j 1 and j 2);

  2. 2.

    For \({j_1\in J_1, \dots ,j_\ell\in J_\ell}\), the coordinates \({j_1, \dots ,j_\ell}\) are independent.

We say that T has minimal self‐joinings if T has k‑fold minimal self‐joinings for every \({k\ge2}\).

Off‐diagonal self‐joinings:

Let \({(X,\mathcal{A},\mu,T)}\) be a measure‐preserving dynamical system, and S be an invertible measure‐preserving transformation of \({(X,\mathcal{A},\mu)}\) commuting with T. Then the probability measure \( \Delta \) S defined on \({X\times X}\) by

$$ \Delta_S(A\times B) \mathrel{\mathop:}= \mu(A\cap S^{-1}B) $$
(1)

is a 2‑fold self‐joining of T supported on the graph of S. We call it an off‐diagonal self‐joining of T.

Process in a measure‐preserving dynamical systems:

Let \({(X,\mathcal{A},\mu,T)}\) be a measure‐preserving dynamical system, and let \({(E,\mathcal{B}(E))}\) be a measurable space (which may be a finite or countable set, or \({\mathbb{R}^d}\), or \({\mathbb{C}^d}\)…). For any E‑valued random variable ξ defined on the probability space \({(X,\mathcal{A},\mu)}\), we can consider the stochastic process \({(\xi_i)_{i\in\mathbb{Z}}}\) defined by

$$ \xi_i\mathrel{\mathop:}= \xi\circ T^i\:. $$

Since T preserves the probability measure μ, \({(\xi_i)_{i\in\mathbb{Z}}}\) is a stationary process: For any ℓ and n, the distribution of \({(\xi_0, \dots ,\xi_\ell)}\) is the same as the probability distribution of \({(\xi_n, \dots ,\xi_{n+\ell})}\).

Self‐joining:

Let T be a measure‐preserving dynamical system. A self‐joining of T is a joining of a family \({\left(X_i,\mathcal{A}_i,\mu_i,T_i\right)_{i\in I}}\) of systems where each T i is a copy of T. If I is finite and has cardinal k, we speak of a k‑fold self‐joining of T.

Simplicity:

For \({k\ge2}\), we say that the ergodic measure‐preserving dynamical system T is k‑fold simple if, for any ergodic joining λ of k copies of T, we can partition the set \({\{1, \dots ,k\}}\) of coordinates into subsets \({J_1, \dots ,J_\ell}\) such that

  1. 1.

    for j 1 and j 2 belonging to the same J i , the marginal of λ on the coordinates j 1 and j 2 is supported on the graph of some \({S\in C(T)}\) (depending on j 1 and j 2);

  2. 2.

    for \({j_1\in J_1, \dots ,j_\ell\in J_\ell}\), the coordinates \({j_1, \dots ,j_\ell}\) are independent.

We say that T is simple if T is k‑fold simple for every \({k\ge2}\).

Bibliography

  1. Ahn Y-H, Lemańczyk M (2003) An algebraic property of joinings. Proc Amer Math Soc 131(6):1711–1716 (electronic)

    Google Scholar 

  2. Bułatek W, Lemańczyk M, Lesigne E (2005) On the filtering problem for stationary random \({\mathbb{Z}\sp 2}\)-fields. IEEE Trans Inform Theory 51(10):3586–3593

    Google Scholar 

  3. Burton R, Rothstein A (1977) Isomorphism theorems in ergodic theory. Technical report, Oregon State University

    Google Scholar 

  4. Chacon RV (1969) Weakly mixing transformations which are not strongly mixing. Proc Amer Math Soc 22:559–562

    Article  MathSciNet  MATH  Google Scholar 

  5. de la Rue T (2006) 2‑fold and 3‑fold mixing: why 3-dot-type counterexamples are impossible in one dimension. Bull Braz Math Soc (NS) 37(4):503–521

    Article  MATH  Google Scholar 

  6. de la Rue T (2006) An introduction to joinings in ergodic theory. Discret Contin Dyn Syst 15(1):121–142

    Article  MATH  Google Scholar 

  7. del Junco A (1983) A family of counterexamples in ergodic theory. Isr J Math 44(2):160–188

    Article  MATH  Google Scholar 

  8. del Junco A, Lemańczyk M, Mentzen MK (1995) Semisimplicity, joinings and group extensions. Studia Math 112(2):141–164

    Google Scholar 

  9. del Junco A, Rahe M, Swanson L (1980) Chacon's automorphism has minimal self‐joinings. J Analyse Math 37:276–284

    Article  MathSciNet  MATH  Google Scholar 

  10. del Junco A, Rudolph DJ (1987) On ergodic actions whose self‐joinings are graphs. Ergod Theory Dynam Syst 7(4):531–557

    MATH  Google Scholar 

  11. Derriennic Y, Frączek K, Lemańczyk M, Parreau F (2008) Ergodic automorphisms whose weak closure of off‐diagonal measures consists of ergodic self‐joinings. Colloq Math 110:81–115

    Google Scholar 

  12. Ferenczi S (1997) Systems of finite rank. Colloq Math 73(1):35–65

    MathSciNet  MATH  Google Scholar 

  13. Frączek K, Lemańczyk M (2004) A class of special flows over irrational rotations which is disjoint from mixing flows. Ergod Theory Dynam Syst 24(4):1083–1095

    Google Scholar 

  14. Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math Syst Theory 1:1–49

    Article  MathSciNet  MATH  Google Scholar 

  15. Furstenberg H (1981) Recurrence in ergodic theory and combinatorial number theory. In: M.B. Porter Lectures. Princeton University Press, Princeton

    Google Scholar 

  16. Furstenberg H, Peres Y, Weiss B (1995) Perfect filtering and double disjointness. Ann Inst H Poincaré Probab Stat 31(3):453–465

    MathSciNet  MATH  Google Scholar 

  17. Garsia AM (1970) Topics in almost everywhere convergence. In: Lectures in Advanced Mathematics, vol 4. Markham Publishing Co, Chicago, IL

    Google Scholar 

  18. Glasner E (2003) Ergodic theory via joinings. In: Mathematical Surveys and Monographs, vol 101. American Mathematical Society, Providence

    Google Scholar 

  19. Glasner E, Host B, Rudolph DJ (1992) Simple systems and their higher order self‐joinings. Isr J Math 78(1):131–142

    Article  MathSciNet  MATH  Google Scholar 

  20. Glasner E, Thouvenot J-P, Weiss B (2000) Entropy theory without a past. Ergod Theory Dynam Syst 20(5):1355–1370

    Article  MathSciNet  MATH  Google Scholar 

  21. Glasner S, Weiss B (1983) Minimal transformations with no common factor need not be disjoint. Isr J Math 45(1):1–8

    Article  MathSciNet  MATH  Google Scholar 

  22. Goodson GR (2000) Joining properties of ergodic dynamical systems having simple spectrum. Sankhyā Ser A 62(3):307–317, Ergodic theory and harmonic analysis (Mumbai, 1999)

    MathSciNet  MATH  Google Scholar 

  23. Host B (1991) Mixing of all orders and pairwise independent joinings of systems with singular spectrum. Isr J Math 76(3):289–298

    Article  MathSciNet  MATH  Google Scholar 

  24. Janvresse É, de la Rue T (2007) On a class of pairwise‐independent joinings. Ergod Theory Dynam Syst (to appear)

    Google Scholar 

  25. Kalikow SA (1984) Twofold mixing implies threefold mixing for rank one transformations. Ergod Theory Dynam Syst 4(2):237–259

    Article  MathSciNet  MATH  Google Scholar 

  26. King J (1986) The commutant is the weak closure of the powers, for rank-1 transformations. Ergod Theory Dynam Syst 6(3):363–384

    Article  MATH  Google Scholar 

  27. King J (1988) Joining‐rank and the structure of finite rank mixing transformations. J Anal Math 51:182–227

    Article  MATH  Google Scholar 

  28. Krieger W (1970) On entropy and generators of measure‐preserving transformations. Trans Amer Math Soc 149:453–464

    Article  MathSciNet  MATH  Google Scholar 

  29. Lemańczyk M, Parreau F, Thouvenot J-P (2000) Gaussian automorphisms whose ergodic self‐joinings are Gaussian. Fund Math 164(3):253–293

    Google Scholar 

  30. Lemańczyk M, Thouvenot J-P, Weiss B (2002) Relative discrete spectrum and joinings. Monatsh Math 137(1):57–75

    Google Scholar 

  31. Lesigne E, Rittaud B, and de la Rue T (2003) Weak disjointness of measure‐preserving dynamical systems. Ergod Theory Dynam Syst 23(4):1173–1198

    Article  MATH  Google Scholar 

  32. Nadkarni MG (1998) Basic ergodic theory. In: Birkhäuser Advanced Texts: Basler Lehrbücher, 2nd edn. Birkhäuser, Basel

    Google Scholar 

  33. Nadkarni MG (1998) Spectral theory of dynamical systems. In: Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel

    Google Scholar 

  34. Ornstein DS (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4:337–352

    Article  MathSciNet  MATH  Google Scholar 

  35. Ornstein DS (1972) On the root problem in ergodic theory. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Univ. California, Berkeley, 1970/1971, vol II: Probability theory. Univ California Press, Berkeley, pp 347–356

    Google Scholar 

  36. Ornstein DS (1974) Ergodic theory, randomness, and dynamical systems. In: James K Whittemore Lectures in Mathematics given at Yale University, Yale Mathematical Monographs, vol 5. Yale University Press, New Haven

    Google Scholar 

  37. Parreau F, Roy E (2007) Poisson joinings of Poisson suspension. Preprint

    Google Scholar 

  38. Ratner M (1983) Horocycle flows, joinings and rigidity of products. Ann of Math 118(2):277–313

    Article  MathSciNet  MATH  Google Scholar 

  39. Rohlin VA (1949) On endomorphisms of compact commutative groups. Izvestiya Akad Nauk SSSR Ser Mat 13:329–340

    MathSciNet  Google Scholar 

  40. Roy E (2007) Poisson suspensions and infinite ergodic theory. Ergod Theory Dynam Syst(to appear)

    Google Scholar 

  41. Rudolph DJ (1979) An example of a measure preserving map with minimal self‐joinings, and applications. J Anal Math 35:97–122

    Article  MathSciNet  MATH  Google Scholar 

  42. Rudolph DJ (1990) The title is Fundamentals of Measurable Dynamics: Ergodic Theory on Lebesgue Spaces. Oxford University Press, New York

    Google Scholar 

  43. Rudolph DJ (1994) A joinings proof of Bourgain's return time theorem. Ergod Theory Dynam Syst 14(1):197–203

    Article  MathSciNet  MATH  Google Scholar 

  44. Ryzhikov VV (1992) Stochastic wreath products and joinings of dynamical systems. Mat Zametki 52(3):130–140, 160

    MathSciNet  Google Scholar 

  45. Ryzhikov VV (1992) Mixing, rank and minimal self‐joining of actions with invariant measure. Mat Sb 183(3):133–160

    MathSciNet  MATH  Google Scholar 

  46. Ryzhikov VV (1993) Joinings and multiple mixing of the actions of finite rank. Funktsional Anal Prilozhen 27(2):63–78, 96

    MathSciNet  Google Scholar 

  47. Ryzhikov VV (1993) Joinings, wreath products, factors and mixing properties of dynamical systems. Izv Ross Akad Nauk Ser Mat 57(1):102–128

    Google Scholar 

  48. Thorisson H (2000) Coupling, stationarity, and regeneration. In: Probability and its Applications (New York). Springer, New York

    Google Scholar 

  49. Thouvenot J-P (1995) Some properties and applications of joinings in ergodic theory. In: Ergodic theory and its connections with harmonic analysis, Alexandria, 1993. London Math Soc Lecture Note Ser, vol 205. Cambridge Univ Press, Cambridge, pp 207–235

    Google Scholar 

  50. Thouvenot J-P (1987) The metrical structure of some Gaussian processes. In: Proceedings of the conference on ergodic theory and related topics, II, Georgenthal, 1986. Teubner-Texte Math, vol 94. Teubner, Leipzig, pp 195–198

    Google Scholar 

  51. Veech WA (1982) A criterion for a process to be prime. Monatsh Math 94(4):335–341

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

de la Rue, T. (2012). Joinings in Ergodic Theory. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_49

Download citation

Publish with us

Policies and ethics