Mathematics of Complexity and Dynamical Systems

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Isomorphism Theory in Ergodic Theory

  • Christopher Hoffman
Reference work entry

Article Outline


Definition of the Subject


Basic Transformations

Basic Isomorphism Invariants

Basic Tools

Isomorphism of Bernoulli Shifts

Transformations Isomorphic to Bernoulli Shifts

Transformations not Isomorphic to Bernoulli Shifts

Classifying the Invariant Measures of Algebraic Actions

Finitary Isomorphisms


Other Equivalence Relations

Non‐invertible Transformations

Factors of a Transformation

Actions of Amenable Groups

Future Directions



Probability Vector Markov Random Field Positive Entropy Bernoulli Shift Markov Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Ashley J, Marcus B, Tuncel S (1997) The classification of one-sided Markov chains. Ergod Theory Dynam Syst 17(2):269–295MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Birkhoff GD (1931) Proof of the ergodic theorem. Proc Natl Acad Sci USA 17:656–660CrossRefGoogle Scholar
  3. 3.
    Breiman L (1957) The individual ergodic theorem of information theory. Ann Math Statist 28:809–811MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Den Hollander F, Steif J (1997) Mixing E properties of the generalized \({T,T^{-1}}\)-process. J Anal Math 72:165–202MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Einsiedler M, Lindenstrauss E (2003) Rigidity properties of \({\mathbb{Z}^d}\)-actions on tori and solenoids. Electron Res Announc Amer Math Soc 9:99–110MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Einsiedler M, Katok A, Lindenstrauss E (2006) Invariant measures and the set of exceptions to Littlewood's conjecture. Ann Math (2) 164(2):513–560MathSciNetCrossRefGoogle Scholar
  7. 7.
    Feldman J (1976) New K‑automorphisms and a problem of Kakutani. Isr J Math 24(1):16–38MATHCrossRefGoogle Scholar
  8. 8.
    Freire A, Lopes A, Mañé R (1983) An invariant measure for rational maps. Bol Soc Brasil Mat 14(1):45–62Google Scholar
  9. 9.
    Friedman NA, Ornstein DS (1970) On isomorphism of weak Bernoulli transformations. Adv Math 5:365–394MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math Syst Theory 1:1–49MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gallavotti G, Ornstein DS (1974) Billiards and Bernoulli schemes. Comm Math Phys 38:83–101MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gromov M (2003) On the entropy of holomorphic maps. Enseign Math (2) 49(3–4):217–235MathSciNetGoogle Scholar
  13. 13.
    Halmos PR (1950) Measure theory. D Van Nostrand, New YorkMATHGoogle Scholar
  14. 14.
    Harvey N, Peres Y. An invariant of finitary codes with finite expected square root coding length. Ergod Theory Dynam Syst, to appearGoogle Scholar
  15. 15.
    Heicklen D (1998) Bernoullis are standard when entropy is not an obstruction. Isr J Math 107:141–155MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Heicklen D, Hoffman C (2002) Rational maps are d‑adic Bernoulli. Ann Math (2) 156(1):103–114MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hoffman C (1999) A K counterexample machine. Trans Amer Math Soc 351(10):4263–4280MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hoffman C (1999) A Markov random field which is K but not Bernoulli. Isr J Math 112:249–269MATHCrossRefGoogle Scholar
  19. 19.
    Hoffman C (2004) An endomorphism whose square is Bernoulli. Ergod Theory Dynam Syst 24(2):477–494MATHCrossRefGoogle Scholar
  20. 20.
    Hoffman C (2003) The scenery factor of the \({[T,T^{-1}]}\) transformation is not loosely Bernoulli. Proc Amer Math Soc 131(12):3731–3735MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hoffman C, Rudolph D (2002) Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann Math (2) 156(1):79–101MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hopf E (1971) Ergodic theory and the geodesic flow on surfaces of constant negative curvature. Bull Amer Math Soc 77:863–877MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Jong P (2003) On the isomorphism problem of p‑endomorphisms. Ph D thesis, University of TorontoGoogle Scholar
  24. 24.
    Kalikow SA (1982) \({T,T^{-1}}\) transformation is not loosely Bernoulli. Ann Math (2) 115(2):393–409MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kammeyer JW, Rudolph DJ (2002) Restricted orbit equivalence for actions of discrete amenable groups. Cambridge tracts in mathematics, vol 146. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. 26.
    Katok AB (1975) Time change, monotone equivalence, and standard dynamical systems. Dokl Akad Nauk SSSR 223(4):789–792; in RussianMathSciNetGoogle Scholar
  27. 27.
    Katok A (1980) Smooth non‐Bernoulli K‑automorphisms. Invent Math 61(3):291–299MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Katok A, Spatzier RJ (1996) Invariant measures for higher‐rank hyperbolic abelian actions. Ergod Theory Dynam Syst 16(4):751–778MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Katznelson Y (1971) Ergodic automorphisms of T n are Bernoulli shifts. Isr J Math 10:186–195MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Keane M, Smorodinsky M (1979) Bernoulli schemes of the same entropy are finitarily isomorphic. Ann Math (2) 109(2):397–406MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kolmogorov AN (1958) A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces. Dokl Akad Nauk SSSR (NS) 119:861–864; in RussianMathSciNetMATHGoogle Scholar
  32. 32.
    Kolmogorov AN (1959) Entropy per unit time as a metric invariant of automorphisms. Dokl Akad Nauk SSSR 124:754–755; in RussianMathSciNetMATHGoogle Scholar
  33. 33.
    Krieger W (1970) On entropy and generators of measure‐preserving transformations. Trans Amer Math Soc 149:453–464MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Ledrappier F (1978) Un champ markovien peut être d'entropie nulle et mélangeant. CR Acad Sci Paris Sér A–B 287(7):A561–A563; in FrenchGoogle Scholar
  35. 35.
    Lindenstrauss E (2001) Pointwise theorems for amenable groups. Invent Math 146(2):259–295MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Lyons R (1988) On measures simultaneously 2- and 3‑invariant. Isr J Math 61(2):219–224MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Mañé R (1983) On the uniqueness of the maximizing measure for rational maps. Bol Soc Brasil Mat 14(1):27–43Google Scholar
  38. 38.
    Mañé R (1985) On the Bernoulli property for rational maps. Ergod Theory Dynam Syst 5(1):71–88Google Scholar
  39. 39.
    Meilijson I (1974) Mixing properties of a class of skew‐products. Isr J Math 19:266–270MathSciNetCrossRefGoogle Scholar
  40. 40.
    Meshalkin LD (1959) A case of isomorphism of Bernoulli schemes. Dokl Akad Nauk SSSR 128:41–44; in RussianMathSciNetMATHGoogle Scholar
  41. 41.
    Nevo A (1994) Pointwise ergodic theorems for radial averages on simple Lie groups. I. Duke Math J 76(1):113–140MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Nevo A, Stein EM (1994) A generalization of Birkhoff's pointwise ergodic theorem. Acta Math 173(1):135–154MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Ornstein DS (1973) A K automorphism with no square root and Pinsker's conjecture. Adv Math 10:89–102MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Ornstein D (1970) Factors of Bernoulli shifts are Bernoulli shifts. Adv Math 5:349–364MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ornstein D (1970) Two Bernoulli shifts with infinite entropy are isomorphic. Adv Math 5:339–348MathSciNetCrossRefGoogle Scholar
  46. 46.
    Ornstein D (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4:337–352MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Ornstein DS (1973) An example of a Kolmogorov automorphism that is not a Bernoulli shift. Adv Math 10:49–62MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Ornstein DS (1973) A mixing transformation for which Pinsker's conjecture fails. Adv Math 10:103–123MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Ornstein DS, Rudolph DJ, Weiss B (1982) Equivalence of measure preserving transformations. Mem Amer Math Soc 37(262). American Mathematical SocietyGoogle Scholar
  50. 50.
    Ornstein DS, Shields PC (1973) An uncountable family of K‑automorphisms. Adv Math 10:63–88MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Ornstein D, Weiss B (1983) The Shannon–McMillan–Breiman theorem for a class of amenable groups. Isr J Math 44(1):53–60MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Ornstein DS, Weiss B (1973) Geodesic flows are Bernoullian. Isr J Math 14:184–198MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Ornstein DS, Weiss B (1974) Finitely determined implies very weak Bernoulli. Isr J Math 17:94–104MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Ornstein DS, Weiss B (1987) Entropy and isomorphism theorems for actions of amenable groups. J Anal Math 48:1–141MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Parry W (1981) Topics in ergodic theory. Cambridge tracts in mathematics, vol 75. Cambridge University Press, CambridgeGoogle Scholar
  56. 56.
    Parry W (1969) Entropy and generators in ergodic theory. WA Benjamin, New YorkMATHGoogle Scholar
  57. 57.
    Petersen K (1989) Ergodic theory. Cambridge studies in advanced mathematics, vol 2. Cambridge University Press, CambridgeGoogle Scholar
  58. 58.
    Pinsker MS (1960) Dynamical systems with completely positive or zero entropy. Dokl Akad Nauk SSSR 133:1025–1026; in RussianMathSciNetGoogle Scholar
  59. 59.
    Ratner M (1978) Horocycle flows are loosely Bernoulli. Isr J Math 31(2):122–132MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Ratner M (1982) Rigidity of horocycle flows. Ann Math (2) 115(3):597–614MathSciNetCrossRefGoogle Scholar
  61. 61.
    Ratner M (1983) Horocycle flows, joinings and rigidity of products. Ann Math (2) 118(2):277–313MathSciNetCrossRefGoogle Scholar
  62. 62.
    Ratner M (1991) On Raghunathan's measure conjecture. Ann Math (2) 134(3):545–607MathSciNetCrossRefGoogle Scholar
  63. 63.
    Halmos PR (1960) Lectures on ergodic theory. Chelsea Publishing, New YorkMATHGoogle Scholar
  64. 64.
    Rudolph DJ (1985) Restricted orbit equivalence. Mem Amer Math Soc 54(323). American Mathematical SocietyGoogle Scholar
  65. 65.
    Rudolph DJ (1979) An example of a measure preserving map with minimal self‐joinings, and applications. J Anal Math 35:97–122MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Rudolph DJ (1976) Two nonisomorphic K‑automorphisms with isomorphic squares. Isr J Math 23(3–4):274–287MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Rudolph DJ (1983) An isomorphism theory for Bernoulli free Z‐skew‐compact group actions. Adv Math 47(3):241–257MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Rudolph DJ (1988) Asymptotically Brownian skew products give non‐loosely Bernoulli K‑automorphisms. Invent Math 91(1):105–128MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Rudolph DJ (1990) \({\times 2}\) and \({\times 3}\) invariant measures and entropy. Ergod Theory Dynam Syst 10(2):395–406MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Schmidt K (1984) Invariants for finitary isomorphisms with finite expected code lengths. Invent Math 76(1):33–40MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Shields P (1973) The theory of Bernoulli shifts. Chicago lectures in mathematics. University of Chicago Press, ChicagoGoogle Scholar
  72. 72.
    Sinaĭ JG (1962) A weak isomorphism of transformations with invariant measure. Dokl Akad Nauk SSSR 147:797–800; in RussianGoogle Scholar
  73. 73.
    Sinaĭ J (1959) On the concept of entropy for a dynamic system. Dokl Akad Nauk SSSR 124:768–771; in RussianGoogle Scholar
  74. 74.
    Thouvenot J-P (1975) Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli. Conference on ergodic theory and topological dynamics, Kibbutz, Lavi, 1974. Isr J Math 21(2–3):177–207; in FrenchGoogle Scholar
  75. 75.
    Thouvenot J-P (1975) Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie. Conference on ergodic theory and topological dynamics, Kibbutz Lavi, 1974. Isr J Math 21(2–3):208–214; in FrenchGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Christopher Hoffman
    • 1
  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA