Skip to main content

Infinite Dimensional Controllability

  • Reference work entry
  • 388 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

First Definitions and Examples

Linear Systems

Nonlinear Systems

Some Other Problems

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Infinite dimensional control system:

A infinite dimensional control system is a dynamical system whose state lies in an infinite dimensional vector space—typically a Partial Differential Equation (PDE)—and depending on some parameter to be chosen, called the control.

Exact controllability:

The exact controllability property is the possibility to steer the state of the system from any initial data to any target by choosing the control as a function of time in an appropriate way.

Approximate controllability:

The approximate controllability property is the possibility to steer the state of the system from any initial data to a state arbitrarily close to a target by choosing a suitable control.

Controllability to trajectories:

The controllability to trajectories is the possibility to make the state of the system join some prescribed trajectory by choosing a suitable control.

Bibliography

  1. Agrachev A, Sarychev A (2005) Navier–Stokes equations: control lability by means of low modes forcing. J Math Fluid Mech 7(1):108–152

    Article  MathSciNet  MATH  Google Scholar 

  2. Ancona F, Bressan A, Coclite GM (2003) Some results on the boundary control of systems of conservation laws. Hyperbolic problems: theory, numerics, applications. Springer, Berlin, pp 255–264

    Book  Google Scholar 

  3. Ancona F, Marson A (1998) On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J Control Optim 36(1):290–312

    Article  MathSciNet  MATH  Google Scholar 

  4. Avdonin SA, Ivanov SA (1995) Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  5. Ball JM, Marsden JE, Slemrod M (1982) Controllability for distributed bilinear systems. SIAM J Control Optim 20:575–597

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandrauk AD, Delfour MC, Le Bris C (eds) (2003) Quantum control: mathematical and numerical challenges. Papers from the CRM Workshop held at the Université de Montréal, Montréal, 6–11 October 2002. CRM Proceedings and Lecture Notes, vol 33. American Mathematical Society, Providence

    Google Scholar 

  7. Barbu V, Iannelli M (2000) Controllability of the heat equation with memory. Differ Integral Equ 13(10–12):1393–1412

    MathSciNet  MATH  Google Scholar 

  8. Barbu V, Răşcanu A, Tessitore G (2003) Null controllability of stochastic heat equations with a multiplicative noise. Appl Math Optim 47(2):97–120

    Google Scholar 

  9. Barbos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control and stabilisation of waves from the boundary. SIAM J Control Optim 305:1024–1065

    Google Scholar 

  10. Beauchard K (2005) Local controllability of a 1D Schrödinger equation. J Math Pures Appl 84:851–956

    MathSciNet  MATH  Google Scholar 

  11. Bensoussan A, Da Prato G, Delfour MC, Mitter SK (1993) Representation and control of infinite-dimensional systems, vol I, II. Systems and Control: Foundations and Applications. Birkhäuser, Boston

    Book  Google Scholar 

  12. Brezis H (1983) Analyse fonctionnelle, Théorie et applications; Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris

    Google Scholar 

  13. Burq N (1997) Contrôle de l'équation des ondes dans des ouverts peu réguliers. Asymptot Anal 14:157–191

    MathSciNet  MATH  Google Scholar 

  14. Burq N, Gérard P (1997) Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C R Acad Sci Paris Sér. I Math 325(7):749–752

    Google Scholar 

  15. Cirinà M (1969) Boundary controllability of nonlinear hyperbolic systems. SIAM J Control 7:198–212

    Google Scholar 

  16. Coron JM (1996) On the controllability of 2-D incompressible perfect fluids. J Math Pures Appl 75:155–188

    MathSciNet  MATH  Google Scholar 

  17. Coron JM (1996) On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim Calc Var 1:35–75

    Article  MathSciNet  MATH  Google Scholar 

  18. Coron JM (2007) Control and Nonlinearity. Mathematical Surveys and Monographs, vol 136. American Mathematical Society, Providence

    Google Scholar 

  19. Coron JM, Fursikov AV (1996) Global exact controllability of the 2-D Navier–Stokes equations on a manifold without boundary. Russian J Math Phys 4:1–19

    MathSciNet  Google Scholar 

  20. Coron JM, Crépeau E (2004) Exact boundary controllability of a nonlinear KdV equation with critical lengths. JEMS J Eur Math Soc 6(3):367–398

    Google Scholar 

  21. Coron JM, Trélat E (2004) Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J Control Optim 43(2):549–569

    Google Scholar 

  22. Courant R, Hilbert D (1989) Methods of mathematical physics, vol II. Partial differential equations, Wiley Classics Library. Wiley, New York

    Google Scholar 

  23. Dàger R, Zuazua E (2006) Wave propagation, observation and control in 1-d flexible multi-structures. Mathématiques and Applications, vol 50. Springer, Berlin

    Google Scholar 

  24. Dolecki S, Russell DL (1977) A general theory of observation and control. SIAM J Control Optim 15(2):185–220

    Article  MathSciNet  MATH  Google Scholar 

  25. Douglas RG (1966) On majorization, factorization, and range inclusion of operators on Hilbert space. Proc Amer Math Soc 17:413–415

    Article  MathSciNet  MATH  Google Scholar 

  26. Fabre C, Puel JP, Zuazua E (1995) Approximate controllability of the semilinear heat equation. Proc Roy Soc Edinburgh Sect A 125(1):31–61

    Article  MathSciNet  MATH  Google Scholar 

  27. Fattorini HO, Russell DL (1971) Exact controllability theorems for linear parabolic equation in one space dimension. Arch Rat Mech Anal 43:272–292

    Article  MathSciNet  MATH  Google Scholar 

  28. Fernández-Cara E, Guerrero S (2006) Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J Control Optim 45(4):1399–1446

    Google Scholar 

  29. Fernández-Cara E, Guerrero S, Imanuvilov OY, Puel JP (2004) Local exact controllability to the trajectories of the Navier–Stokes equations. J Math Pures Appl 83:1501–1542

    Google Scholar 

  30. Fernández-Cara E, Zuazua E (2000) The cost of approximate controllability for heat equations: The linear case. Adv Differ Equ 5:465–514

    Google Scholar 

  31. Fernández-Cara E, Zuazua E (2000) Null and approximate controllability for weakly blowing up semilinear heat equations. Ann Inst H Poincaré Anal Non Linéaire 17(5):583–616

    Google Scholar 

  32. Fernández-Cara E, Zuazua E (2003) Control Theory: History, mathematical achievements and perspectives. Boletin SEMA 26:79–140

    Google Scholar 

  33. Fliess M, Lévine J, Martin P, Rouchon P (1995) Flatness and defect of non-linear systems: introductory theory and examples. Int J Control 61(6):1327–1361

    Google Scholar 

  34. Fursikov A, Imanuvilov OY (1995) On controllability of certain systems simulating a fluid flow, Flow control, Minneapolis, 1992. IMA Math Appl, vol 68. Springer, New York, pp 149–184

    Google Scholar 

  35. Fursikov A, Imanuvilov OY (1996) Controllability of evolution equations. Lecture Notes Series, vol 34. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul

    Google Scholar 

  36. Glass O (2003) On the controllability of the Vlasov-Poisson system. J Differ Equ 195(2):332–379

    Article  MathSciNet  MATH  Google Scholar 

  37. Glass O (2007) On the controllability of the 1-D isentropic Euler equation. J Eur Math Soc 9:427–486

    Article  MathSciNet  MATH  Google Scholar 

  38. Henry J (1978) Controllability of some non linear parabolic equations. In: Ruberti A (ed) Distributed Parameter Systems: Modelling and Identification. Proceedings of the IFIP working conference, Rome, 21–24 June 1976. Lecture Notes in Control and Information Sciences, vol 1. Springer, Berlin

    Google Scholar 

  39. Henry J (1977) Étude de la contrôlabilité de certaines équations paraboliques non linéaires. Thèse, Paris VI

    Google Scholar 

  40. Hörmander L (1983) The analysis of linear partial differential operators, vol I. Grundlehren der mathematischen Wissenschaften, vol 256. Springer, Berlin

    Google Scholar 

  41. Imanuvilov OY (2001) Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim Calc Var 6:39–72

    Article  MathSciNet  MATH  Google Scholar 

  42. Komornik V (1994) Exact controllability and stabilization, The multiplier method. RAM: Research in Applied Mathematics. Masson, Paris

    Google Scholar 

  43. Komornik V, Loreti P (2005) Fourier series in control theory. Springer Monographs in Mathematics. Springer, New York

    Google Scholar 

  44. Lagnese JE, Leugering G, Schmidt EJPG (1994) Modeling, analysis and control of dynamic elastic multi-link structures. Systems and Control: Foundations and Applications. Birkhäuser, Boston

    Google Scholar 

  45. Laroche B, Martin P, Rouchon P (2000) Motion planning for the heat equation. Int J Robust Nonlinear Control 10(8):629–643

    Article  MathSciNet  MATH  Google Scholar 

  46. Lasiecka I, Triggiani R (1983) Regularity of hyperbolic equations under \({L^2(0,T;L^2(\Gamma))}\)-Dirichlet boundary terms. Appl Math Optim 10(3):275–286

    Article  MathSciNet  MATH  Google Scholar 

  47. Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories, vol I. Abstract parabolic systems and II, Abstract hyperbolic-like systems over a finite time horizon. Encyclopedia of Mathematics and its Applications, vols 74, 75. Cambridge University Press, Cambridge

    Google Scholar 

  48. Lebeau G, Robbiano L (1995) Contrôle exact de l'équation de la chaleur. Comm PDE 20:335–356

    Article  MathSciNet  MATH  Google Scholar 

  49. Li TT, Rao BP (2003) Exact boundary controllability for quasi-linear hyperbolic systems. SIAM J Control Optim 41(6):1748–1755

    Article  MathSciNet  MATH  Google Scholar 

  50. Lions JL (1988) Exact controllability, stabilizability and perturbations for distributed systems. SIAM Rev 30:1–68

    Article  MathSciNet  MATH  Google Scholar 

  51. Lions JL (1988) Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tomes 1, 2. RMA 8, 9. Masson, Paris

    Google Scholar 

  52. Lions JL (1990) Are there connections between turbulence and controllability? In: Bensoussan A, Lions JL (eds) Analysis and Optimization of Systems. Lecture Notes Control and Inform Sci, vol 144. Springer, Berlin

    Google Scholar 

  53. Lions JL (1992) Remarks on approximate controllability. J Analyse Math 59:103–116

    Article  MATH  Google Scholar 

  54. Le Bris C (2000) Control theory applied to quantum chemistry: some tracks, Contrôle des, systèmes gouvernés par des équations aux dérivées partielles, Nancy, 1999. ESAIM Proc 8:77–94

    Article  MATH  Google Scholar 

  55. Li TT (2008) Exact boundary observability for quasilinear hyperbolic systems. ESAIM Control Optim Calc Var 14:759–766

    Article  MathSciNet  MATH  Google Scholar 

  56. Lions JL (1971) Optimal control of systems governed by partial differential equations. Grundlehren der mathematischen Wissenschaften, vol 170. Springer, Berlin

    Google Scholar 

  57. López A, Zuazua E (2002) Uniform null controllability for the one dimensional heat equation with rapidly oscillating periodic density. Ann IHP Analyse linéaire 19(5):543–580

    Google Scholar 

  58. Miller L (2006) On exponential observability estimates for the heat semigroup with explicit rates. Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei, vol 9. Mat Appl 17(4):351–366

    MathSciNet  MATH  Google Scholar 

  59. Murray RM (ed) (2003) Control in an information rich world. Report of the Panel on Future Directions in Control, Dynamics, and Systems. Papers from the meeting held in College Park, 16–17 July 2000. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  60. Osses A (2001) A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control. SIAM J Control Optim 40(3):777–800

    Article  MathSciNet  MATH  Google Scholar 

  61. Rosier L (1997) Exact boundary controllability for the Korteweg‐de Vries equation on a bounded domain. ESAIM Control Optim Calc Var 2:33–55

    Article  MathSciNet  MATH  Google Scholar 

  62. Russell DL (1967) On boundary-value controllability of linear symmetric hyperbolic systems. Mathematical Theory of Control. Proc Conf Los Angeles, pp 312–321

    Google Scholar 

  63. Russell DL (1973) A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Int Math Res Notices 52:189–221

    MATH  Google Scholar 

  64. Russell DL (1974) Exact boundary value controllability theorems for wave and heat processes in star-complemented regions. Differential games and control theory. Proc NSFCBMS Regional Res Conf Univ. Rhode Island, Kingston, 1973. Lecture Notes in Pure Appl Math, vol 10. Dekker, New York, pp 291–319

    Google Scholar 

  65. Russell DL (1978) Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev 20:639–739

    Article  MathSciNet  MATH  Google Scholar 

  66. Seidman TI (1988) How violent are fast controls? Math Control Signal Syst 1(1):89–95

    Article  MathSciNet  MATH  Google Scholar 

  67. Shirikyan A (2006) Approximate control lability of three‐dimensional Navier–Stokes equations. Comm Math Phys 266(1):123–151

    Article  MathSciNet  MATH  Google Scholar 

  68. Smart DR (1974) Fixed point theorems, Cambridge Tracts in Mathematics, No 66. Cambridge University Press, New York

    Google Scholar 

  69. Tucsnak M, Weiss G (2009) Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts. Birkhäuser, Basel

    Book  Google Scholar 

  70. Zhang X (2001) Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities. SIAM J Cont Optim 39:812–834

    Article  Google Scholar 

  71. Zuazua E (1990) Exact controllability for the semilinear wave equation. J Math Pures Appl 69(1):1–31

    MathSciNet  MATH  Google Scholar 

  72. Zuazua E (1993) Exact controllability for semilinear wave equations in one space dimension. Ann Inst H Poincaré Anal Non Linéaire 10(1):109–129

    Google Scholar 

  73. Zuazua E (1998) Some problems and results on the controllability of Partial Differential Equations. Proceedings of the Second European Conference of Mathematics, Budapest, July 1996. Progress in Mathematics, vol 169. Birkhäuser, Basel, pp 276–311

    Google Scholar 

  74. Zuazua E (2002) Controllability of Partial Differential Equations and its Semi-Discrete Approximations. Discret Continuous Dyn Syst 8(2):469–513

    Article  MathSciNet  MATH  Google Scholar 

  75. Zuazua E (2005) Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev 47(2):197–243

    Article  MathSciNet  MATH  Google Scholar 

  76. Zuazua E (2006) Controllability and observability of partial differential equations: some results and open problems. In: Dafermos C, Feiresl E (eds) Handbook of differential equations: evolutionary differential equations, vol 3. Elsevier/North-Holland, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Glass, O. (2012). Infinite Dimensional Controllability. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_46

Download citation

Publish with us

Policies and ethics