Skip to main content

Article Outline

Glossary

Notation

Definition of the Subject

Introduction

Well-posed Hybrid Dynamical Systems

Modeling Hybrid Control Systems

Stability Theory

Design Tools

Applications

Discussion and Final Remarks

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Global asymptotic stability:

The typical closed‐loop objective of a hybrid controller. Often, the hybrid controller achieves global asymptotic stability of a compact set rather than of a point. This is the property that solutions starting near the set remain near the set for all time and all solutions tend toward the set asymptotically. This property is robust, in a practical sense, for well-posed hybrid dynamical systems .

(Well-posed) Hybrid dynamical system:

System that combines behaviors typical of continuous‐time and discrete‐time dynamical systems, that is, combines both flows and jumps. The system is said to be well-posed if the data used to describe the evolution (consisting of a flow map, flow set, jump map, and jump set) satisfy mild regularity conditions; see conditions (C1)–(C3) in Subsect. “Conditions for Well‐posedness”.

Hybrid controller:

Algorithm that takes, as inputs, measurements from a system to be controlled (called the plant) and combines behaviors of continuous‐time and discrete‐time controllers (i. e. flows and jumps) to produce, as outputs, signals that are to control the plant.

Hybrid closed‐loop system:

The hybrid system resulting from the interconnection of a plant and a controller, at least one of which is a hybrid dynamical system.

Invariance principle:

A tool for studying asymptotic properties of bounded solutions to (hybrid) dynamical systems, applicable when asymptotic stability is absent. It characterizes the sets to which such solutions must converge, by relying in part on invariance properties of such sets.

Lyapunov stability theory:

A tool for establishing global asymptotic stability of a compact set without solving for the solutions to the hybrid dynamical system. A Lyapunov function is one that takes its minimum, which is zero, on the compact set, that grows unbounded as its argument grows unbounded, and that decreases in the direction of the flow map on the flow set and via the jump map on the jump set.

Supervisor of hybrid controllers:

A hybrid controller that coordinates the actions of a family of hybrid controllers in order to achieve a certain stabilization objective. Patchy control Lyapunov functions provide a means of constructing supervisors.

Temporal regularization:

A modification to a hybrid controller to enforce a positive lower bound on the amount of time between jumps triggered by the hybrid control algorithm.

Zeno (and discrete) solutions:

A solution (to a hybrid dynamical system) that has an infinite number of jumps in a finite amount of time. It is discrete if, moreover, the solution never flows, i. e., never changes continuously.

Bibliography

Primary Literature

  1. Aubin JP, Haddad G (2001) Cadenced runs of impulse and hybrid control systems. Internat J Robust Nonlinear Control 11(5):401–415

    Article  MathSciNet  MATH  Google Scholar 

  2. Aubin JP, Lygeros J, Quincampoix M, Sastry SS, Seube N (2002) Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans Automat Control 47(1):2–20

    Article  MathSciNet  Google Scholar 

  3. Bacciotti A, Mazzi L (2005) An invariance principle for nonlinear switched systems. Syst Control Lett 54:1109–1119

    Article  MathSciNet  MATH  Google Scholar 

  4. Bainov DD, Simeonov P (1989) Systems with impulse effect: stability, theory, and applications. Ellis Horwood, Chichester; Halsted Press, New York

    MATH  Google Scholar 

  5. Beker O, Hollot C, Chait Y, Han H (2004) Fundamental properties of reset control systems. Automatica 40(6):905–915

    Article  MathSciNet  MATH  Google Scholar 

  6. Branicky M (1998) Multiple Lyapunov functions and other analysis tools for switched hybrid systems. IEEE Trans Automat Control 43(4):475–482

    Article  MathSciNet  MATH  Google Scholar 

  7. Branicky M (2005) Introduction to hybrid systems. In: Levine WS, Hristu-Varsakelis D (eds) Handbook of networked and embedded control systems. Birkhäuser, Boston, pp 91–116

    Chapter  Google Scholar 

  8. Branicky M, Borkar VS, Mitter SK (1998) A unified framework for hybrid control: Model and optimal control theory. IEEE Trans Automat Control 43(1):31–45

    Article  MathSciNet  MATH  Google Scholar 

  9. Brockett RW (1983.) Asymptotic stability and feedback stabilization. In: Brockett RW, Millman RS, Sussmann HJ (eds) Differential Geometric Control Theory. Birkhauser, Boston, MA, pp 181–191

    Google Scholar 

  10. Brogliato B (1996) Nonsmooth mechanics models, dynamics and control. Springer, London

    MATH  Google Scholar 

  11. Broucke M, Arapostathis A (2002) Continuous selections of trajectories of hybrid systems. Syst Control Lett 47:149–157

    Article  MathSciNet  MATH  Google Scholar 

  12. Bupp RT, Bernstein DS, Chellaboina VS, Haddad WM (2000) Resetting virtual absorbers for vibration control. J Vib Control 6:61

    Article  Google Scholar 

  13. Cai C, Goebel R, Sanfelice R, Teel AR (2008) Hybrid systems: limit sets and zero dynamics with a view toward output regulation. In: Astolfi A, Marconi L (eds) Analysis and design of nonlinear control systems – In Honor of Alberto Isidori. Springer, pp 241–261 http://www.springer.com/west/home/generic/search/results?SGWID=4-40109-22-173754110-0

  14. Cai C, Teel AR, Goebel R (2007) Results on existence of smooth Lyapunov functions for asymptotically stable hybrid systems with nonopen basin of attraction. In: Proc. 26th American Control Conference, pp 3456–3461, http://www.ccec.ece.ucsb.edu/~cai/

  15. Cai C, Teel AR, Goebel R (2007) Smooth Lyapunov functions for hybrid systems - Part I: Existence is equivalent to robustness. IEEE Trans Automat Control 52(7):1264–1277

    Article  MathSciNet  Google Scholar 

  16. Cai C, Teel AR, Goebel R (2008) Smooth Lyapunov functions for hybrid systems - Part II: (Pre-)asymptotically stable compact sets. IEEE Trans Automat Control 53(3):734–748. See also [14]

    Article  MathSciNet  Google Scholar 

  17. Cai C, Goebel R, Teel A (2008) Relaxation results for hybrid inclusions. Set-Valued Analysis (To appear)

    Google Scholar 

  18. Chellaboina V, Bhat S, Haddad W (2003) An invariance principle for nonlinear hybrid and impulsive dynamical systems. Nonlin Anal 53:527–550

    Article  MathSciNet  MATH  Google Scholar 

  19. Clegg JC (1958) A nonlinear integrator for servomechanisms. Transactions AIEE 77(Part II):41–42

    Google Scholar 

  20. Collins P (2004) A trajectory-space approach to hybrid systems. In: 16th International Symposium on Mathematical Theory of Networks and Systems, CD-ROM

    Google Scholar 

  21. DeCarlo R, Branicky M, Pettersson S, Lennartson B (2000) Perspectives and results on the stability and stabilizability of hybrid systems. Proc of IEEE 88(7):1069–1082

    Article  Google Scholar 

  22. Filippov A (1988) Differential equations with discontinuous right-hand sides. Kluwer, Dordrecht

    MATH  Google Scholar 

  23. Goebel R, Teel A (2006) Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42(4):573–587

    Article  MathSciNet  MATH  Google Scholar 

  24. Goebel R, Hespanha J, Teel A, Cai C, Sanfelice R (2004) Hybrid systems: Generalized solutions and robust stability. In: Proc. 6th IFAC Symposium in Nonlinear Control Systems, pp 1–12, http://www-ccec.ece.ucsb.edu/7Ersanfelice/Preprints/final_nolcos.pdf

  25. Haddad WM, Chellaboina V, Hui Q, Nersesov SG (2007) Energy- and entropy-based stabilization for lossless dynamical systems via hybrid controllers. IEEE Trans Automat Control 52(9):1604–1614, http://ieeexplore.ieee.org/iel5/9/4303218/04303228.pdf

    Google Scholar 

  26. Hájek O (1979) Discontinuous differential equations, I. J Diff Eq 32:149–170

    Google Scholar 

  27. Hermes H (1967) Discontinuous vector fields and feedback control. In: Differential Equations and Dynamical Systems, Academic Press, New York, pp 155–165

    Google Scholar 

  28. Hespanha J (2004) Uniform stability of switched linear systems: Extensions of LaSalle's invariance principle. IEEE Trans Automat Control 49(4):470–482

    Article  MathSciNet  Google Scholar 

  29. Hespanha J, Morse A (1999) Stabilization of nonholonomic integrators via logic-based switching. Automatica 35(3):385–393

    Article  MathSciNet  MATH  Google Scholar 

  30. Hespanha J, Liberzon D, Angeli D, Sontag E (2005) Nonlinear norm-observability notions and stability of switched systems. IEEE Trans Automat Control 50(2):154–168

    Article  MathSciNet  Google Scholar 

  31. Hespanha JP, Liberzon D, Morse AS (1999) Logic-based switching control of a nonholonomic system with parametric modeling uncertainty. Syst Control Lett 38:167–177

    Article  MathSciNet  MATH  Google Scholar 

  32. Johansson K, Egerstedt M, Lygeros J, Sastry S (1999) On the regularization of zeno hybrid automata. Syst Control Lett 38(3):141–150

    Article  MathSciNet  MATH  Google Scholar 

  33. Kellet CM, Teel AR (2004) Smooth Lyapunov functions and robustness of stability for differential inclusions. Syst Control Lett 52:395–405

    Article  Google Scholar 

  34. Krasovskii N (1970) Game-Theoretic Problems of capture. Nauka, Moscow

    Google Scholar 

  35. LaSalle JP (1967) An invariance principle in the theory of stability. In: Hale JK, LaSalle JP (eds) Differential equations and dynamical systems. Academic Press, New York

    Google Scholar 

  36. LaSalle J (1976) The stability of dynamical systems. SIAM's Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  37. Lucibello P, Oriolo G (1995) Stabilization via iterative state steering with application to chained-form systems. In: Proc. 35th IEEE Conference on Decision and Control, pp 2614–2619

    Google Scholar 

  38. Lygeros J (2005) An overview of hybrid systems control. In: Levine WS, Hristu-Varsakelis D (eds) Handbook of Networked and Embedded Control Systems. Birkhäuser, Boston, pp 519–538

    Chapter  Google Scholar 

  39. Lygeros J, Johansson K, Sastry S, Egerstedt M (1999) On the existence of executions of hybrid automata. In: Proc. 38th IEEE Conference on Decision and Control, pp 2249–2254

    Google Scholar 

  40. Lygeros J, Johansson K, Simić S, Zhang J, Sastry SS (2003) Dynamical properties of hybrid automata. IEEE Trans Automat Control 48(1):2–17

    Google Scholar 

  41. M Bohner M, Peterson A (2001) Dynamic equations on time scales. An introduction with applications. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  42. Mayhew CG, Sanfelice RG, Teel AR (2007) Robust source seeking hybrid controllers for autonomous vehicles. In: Proc. 26th American Control Conference, pp 1185–1190

    Google Scholar 

  43. Michel A (1999) Recent trends in the stability analysis of hybrid dynamical systems. IEEE Trans Circuits Syst – I Fund Theory Appl 45(1):120–134

    Google Scholar 

  44. Morin P, Samson C (2000) Robust stabilization of driftless systems with hybrid open-loop/feedback control. In: Proc. 19th American Control Conference, pp 3929–3933

    Google Scholar 

  45. Nesic D, Zaccarian L, Teel A (2008) Stability properties of reset systems. Automatica 44(8):2019–2026

    Article  MathSciNet  Google Scholar 

  46. Plestan F, Grizzle J, Westervelt E, Abba G (2003) Stable walking of a 7-dof biped robot. IEEE Trans Robot Automat 19(4):653–668

    Article  Google Scholar 

  47. Prieur C (2001) Uniting local and global controllers with robustness to vanishing noise. Math Contr, Sig Syst 14(2):143–172

    Article  MathSciNet  MATH  Google Scholar 

  48. Prieur C (2005) Asymptotic controllability and robust asymptotic stabilizability. SIAM J Control Opt 43:1888–1912

    Article  MathSciNet  MATH  Google Scholar 

  49. Prieur C, Astolfi A (2003) Robust stabilization of chained systems via hybrid control. IEEE Trans Automat Control 48(10):1768–1772

    Article  MathSciNet  Google Scholar 

  50. Prieur C, Goebel R, Teel A (2007) Hybrid feedback control and robust stabilization of nonlinear systems. IEEE Trans Automat Control 52(11):2103–2117

    Article  MathSciNet  Google Scholar 

  51. Ronsse R, Lefèvre P, Sepulchre R (2007) Rhythmic feedback control of a blind planar juggler. IEEE Transactions on Robotics 23(4):790–802, http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2007/RLS07

    Google Scholar 

  52. Ryan E (1994) On Brockett's condition for smooth stabilizability and its necessity in a context of nonsmooth feedback. SIAM J Control Optim 32(6):1597–1604

    Article  MathSciNet  MATH  Google Scholar 

  53. Sanfelice R, Goebel R, Teel A (2006) A feedback control motivation for generalized solutions to hybrid systems. In: Hespanha JP, Tiwari A (eds) Hybrid Systems: Computation and Control: 9th International Workshop, vol LNCS, vol 3927. Springer, Berlin, pp 522–536

    Chapter  Google Scholar 

  54. Sanfelice R, Goebel R, Teel A (2007) Invariance principles for hybrid systems with connections to detectability and asymptotic stability. IEEE Trans Automat Control 52(12):2282–2297

    Article  MathSciNet  Google Scholar 

  55. Sanfelice R, Teel AR, Sepulchre R (2007) A hybrid systems approach to trajectory tracking control for juggling systems. In: Proc. 46th IEEE Conference on Decision and Control, pp 5282–5287

    Google Scholar 

  56. Sanfelice R, Goebel R, Teel A (2008) Generalized solutions to hybrid dynamical systems. ESAIM: Control, Optimisation and Calculus of Variations 14(4):699–724

    Google Scholar 

  57. Sanfelice RG, Teel AR (2007) A “throw-and-catch” hybrid control strategy for robust global stabilization of nonlinear systems. In: Proc. 26th American Control Conference, pp 3470–3475

    Google Scholar 

  58. van der Schaft A, Schumacher H (2000) An introduction to hybrid dynamical systems. Lecture notes in control and information sciences. Springer, London

    Google Scholar 

  59. Tavernini L (1987) Differential automata and their discrete simulators. Nonlinear Anal 11(6):665–683

    Article  MathSciNet  MATH  Google Scholar 

  60. Westervelt E, Grizzle J, Koditschek D (2003) Hybrid zero dynamics of planar biped walkers. IEEE Trans Automat Control 48(1):42–56

    Article  MathSciNet  Google Scholar 

  61. Witsenhausen HS (1966) A class of hybridstate continuous-time dynamic systems. IEEE Trans Automat Control 11(2):161–167

    Article  Google Scholar 

  62. Ye H, Mitchel A, Hou L (1998) Stability theory for hybrid dynamical systems. IEEE Trans Automat Control 43(4):461–474

    Article  MathSciNet  MATH  Google Scholar 

  63. Yoon TW, Kim JS, Morse A (2007) Supervisory control using a new control-relevant switching. Automatica 43(10):1791–1798

    Article  MathSciNet  MATH  Google Scholar 

Books and Reviews

  1. Aubin JP, Cellina A (1984) Differential inclusions. Springer, Berlin

    Book  MATH  Google Scholar 

  2. Haddad WM, Chellaboina V, Nersesov SG (2006) Impulsive and hybrid dynamical systems: stability, dissipativity, and control. Princeton University Press, Princeton

    MATH  Google Scholar 

  3. Levine WS, Hristu‐Varsakelis D (2005) Handbook of networked and embedded control systems. Birkhäuser, Boston

    Google Scholar 

  4. Liberzon D (2003) Switching in systems and control. Systems and control: Foundations and applications. Birkhäuser, Boston

    Google Scholar 

  5. Matveev AS, Savkin AV (2000) Qualitative theory of hybrid dynamical systems. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  6. Michel AN, Wang L, Hu B (2001) Qualitative theory of dynamical systems. Dekker

    Google Scholar 

  7. Rockafellar RT, Wets RJ-B (1998) Variational analysis. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Teel, A.R., Sanfelice, R.G., Goebel, R. (2012). Hybrid Control Systems. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_43

Download citation

Publish with us

Policies and ethics