Mathematics of Complexity and Dynamical Systems

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Fractals and Wavelets: What Can We Learn on Transcription and Replication from Wavelet-Based Multifractal Analysis of DNA Sequences?

  • Alain Arneodo
  • Benjamin Audit
  • Edward-Benedict Brodie of Brodie
  • Samuel Nicolay
  • Marie Touchon
  • Yves d'Aubenton-Carafa
  • Maxime Huvet
  • Claude Thermes
Reference work entry

Article Outline


Definition of the Subject


A Wavelet-Based Multifractal Formalism: The Wavelet Transform Modulus Maxima Method

Bifractality of Human DNA Strand-Asymmetry Profiles Results from Transcription

From the Detection of Relication Origins Using the Wavelet Transform Microscope to the Modeling of Replication in Mammalian Genomes

A Wavelet-Based Methodology to Disentangle Transcription- and Replication-Associated Strand Asymmetries Reveals a Remarkable Gene Organization in the Human Genome

Future Directions




Replication Origin Multifractal Analysis Singularity Spectrum Maximum Line Multifractal Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



We thank O. Hyrien, F. Mongelard and C. Moskalenko for interesting discussions. This work was supported by the Action Concertée Incitative Informatique, Mathématiques, Physique en Biologie Moléculaire 2004 under the project “ReplicOr”, the Agence Nationale de la Recherche under the project “HUGOREP” and the program “Emergence” of the Conseil Régional Rhônes-Alpes and by the Programme d'Actions Intégrées Tournesol.


Primary Literature

  1. 1.
    Goupillaud P, Grossmann A, Morlet J (1984) Cycle‐octave and related transforms in seismic signal analysis. Geoexploration 23:85–102CrossRefGoogle Scholar
  2. 2.
    Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arneodo A, Argoul F, Bacry E, Elezgaray J, Freysz E, Grasseau G, Muzy J-F, Pouligny B (1992) Wavelet transform of fractals. In: Meyer Y (ed) Wavelets and applications. Springer, Berlin, pp 286–352Google Scholar
  4. 4.
    Arneodo A, Argoul F, Elezgaray J, Grasseau G (1989) Wavelet transform analysis of fractals: Application to nonequilibrium phase transitions. In: Turchetti G (ed) Nonlinear dynamics. World Scientific, Singapore, pp 130–180Google Scholar
  5. 5.
    Arneodo A, Grasseau G, Holschneider M (1988) Wavelet transform of multifractals. Phys Rev Lett 61:2281–2284MathSciNetCrossRefGoogle Scholar
  6. 6.
    Holschneider M (1988) On the wavelet transform of fractal objects. J Stat Phys 50:963–993MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Holschneider M, Tchamitchian P (1990) Régularité locale de la fonction non‐différentiable de Riemann. In: Lemarié PG (ed) Les ondelettes en 1989. Springer, Berlin, pp 102–124CrossRefGoogle Scholar
  8. 8.
    Jaffard S (1989) Hölder exponents at given points and wavelet coefficients. C R Acad Sci Paris Sér. I 308:79–81MathSciNetGoogle Scholar
  9. 9.
    Jaffard S (1991) Pointwise smoothness, two‐microlocalization and wavelet coefficients. Publ Mat 35:155–168MathSciNetMATHGoogle Scholar
  10. 10.
    Mallat S, Hwang W (1992) Singularity detection and processing with wavelets. IEEE Trans Info Theory 38:617–643MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Mallat S, Zhong S (1992) Characterization of signals from multiscale edges. IEEE Trans Patt Recog Mach Intell 14:710–732CrossRefGoogle Scholar
  12. 12.
    Arneodo A, Bacry E, Muzy J-F (1995) The thermodynamics of fractals revisited with wavelets. Physica A 213:232–275CrossRefGoogle Scholar
  13. 13.
    Bacry E, Muzy J-F, Arneodo A (1993) Singularity spectrum of fractal signals from wavelet analysis: Exact results. J Stat Phys 70:635–674MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Muzy J-F, Bacry E, Arneodo A (1991) Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys Rev Lett 67:3515–3518CrossRefGoogle Scholar
  15. 15.
    Muzy J-F, Bacry E, Arneodo A (1993) Multifractal formalism for fractal signals: The structure‐function approach versus the wavelet‐transform modulus‐maxima method. Phys Rev E 47:875–884CrossRefGoogle Scholar
  16. 16.
    Muzy J-F, Bacry E, Arneodo A (1994) The multifractal formalism revisited with wavelets. Int J Bifurc Chaos 4:245–302MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Jaffard S (1997) Multifractal formalism for functions part I: Results valid for all functions. SIAM J Math Anal 28:944–970MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Jaffard S (1997) Multifractal formalism for functions part II: Self‐similar functions. SIAM J Math Anal 28:971–998MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Hentschel HGE (1994) Stochastic multifractality and universal scaling distributions. Phys Rev E 50:243–261CrossRefGoogle Scholar
  20. 20.
    Arneodo A, Audit B, Decoster N, Muzy J-F, Vaillant C (2002) Wavelet based multifractal formalism: Application to DNA sequences, satellite images of the cloud structure and stock market data. In: Bunde A, Kropp J, Schellnhuber HJ (eds) The science of disasters: Climate disruptions, heart attacks, and market crashes. Springer, Berlin, pp 26–102Google Scholar
  21. 21.
    Arneodo A, Manneville S, Muzy J-F (1998) Towards log‐normal statistics in high Reynolds number turbulence. Eur Phys J B 1:129–140CrossRefGoogle Scholar
  22. 22.
    Arneodo A, Manneville S, Muzy J-F, Roux SG (1999) Revealing a lognormal cascading process in turbulent velocity statistics with wavelet analysis. Phil Trans R Soc Lond A 357:2415–2438MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Delour J, Muzy J-F, Arneodo A (2001) Intermittency of 1D velocity spatial profiles in turbulence: A magnitude cumulant analysis. Eur Phys J B 23:243–248CrossRefGoogle Scholar
  24. 24.
    Roux S, Muzy J-F, Arneodo A (1999) Detecting vorticity filaments using wavelet analysis: About the statistical contribution of vorticity filaments to intermittency in swirling turbulent flows. Eur Phys J B 8:301–322CrossRefGoogle Scholar
  25. 25.
    Venugopal V, Roux SG, Foufoula‐Georgiou E, Arneodo A (2006) Revisiting multifractality of high‐resolution temporal rainfall using a wavelet‐based formalism. Water Resour Res 42:W06D14Google Scholar
  26. 26.
    Venugopal V, Roux SG, Foufoula-Georgiou E, Arneodo A (2006) Scaling behavior of high resolution temporal rainfall: New insights from a wavelet‐based cumulant analysis. Phys Lett A 348:335–345CrossRefGoogle Scholar
  27. 27.
    Arneodo A, d'Aubenton-Carafa Y, Bacry E, Graves PV, Muzy J‑F, Thermes C (1996) Wavelet based fractal analysis of DNA sequences. Physica D 96:291–320Google Scholar
  28. 28.
    Arneodo A, Bacry E, Graves PV, Muzy J-F (1995) Characterizing long-range correlations in DNA sequences from wavelet analysis. Phys Rev Lett 74:3293–3296CrossRefGoogle Scholar
  29. 29.
    Audit B, Thermes C, Vaillant C, d'Aubenton Carafa Y, Muzy J-F, Arneodo A (2001) Long-range correlations in genomic DNA: A signature of the nucleosomal structure. Phys Rev Lett 86:2471–2474CrossRefGoogle Scholar
  30. 30.
    Audit B, Vaillant C, Arneodo A, d'Aubenton-Carafa Y, Thermes C (2002) Long-range correlations between DNA bending sites: Relation to the structure and dynamics of nucleosomes. J Mol Biol 316:903–918CrossRefGoogle Scholar
  31. 31.
    Arneodo A, Muzy J-F, Sornette D (1998) “Direct” causal cascade in the stock market. Eur Phys J B 2:277–282CrossRefGoogle Scholar
  32. 32.
    Muzy J-F, Sornette D, Delour J, Arneodo A (2001) Multifractal returns and hierarchical portfolio theory. Quant Finance 1:131–148MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR, Stanley HE (1999) Multifractality in human heartbeat dynamics. Nature 399:461–465CrossRefGoogle Scholar
  34. 34.
    Ivanov PC, Rosenblum MG, Peng CK, Mietus J, Havlin S, Stanley HE, Goldberger AL (1996) Scaling behavior of heartbeat intervals obtained by wavelet‐based time‐series analysis. Nature 383:323–327CrossRefGoogle Scholar
  35. 35.
    Arneodo A, Argoul F, Bacry E, Muzy J-F, Tabard M (1992) Golden mean arithmetic in the fractal branching of diffusion‐limited aggregates. Phys Rev Lett 68:3456–3459CrossRefGoogle Scholar
  36. 36.
    Arneodo A, Argoul F, Muzy J-F, Tabard M (1992) Structural 5‑fold symmetry in the fractal morphology of diffusion‐limited aggregates. Physica A 188:217–242CrossRefGoogle Scholar
  37. 37.
    Arneodo A, Argoul F, Muzy J-F, Tabard M (1992) Uncovering Fibonacci sequences in the fractal morphology of diffusion‐limited aggregates. Phys Lett A 171:31–36CrossRefGoogle Scholar
  38. 38.
    Kuhn A, Argoul F, Muzy J-F, Arneodo A (1994) Structural‐analysis of electroless deposits in the diffusion‐limited regime. Phys Rev Lett 73:2998–3001CrossRefGoogle Scholar
  39. 39.
    Arneodo A, Decoster N, Roux SG (2000) A wavelet‐based method for multifractal image analysis, I. Methodology and test applications on isotropic and anisotropic random rough surfaces. Eur Phys J B 15:567–600CrossRefGoogle Scholar
  40. 40.
    Arrault J, Arneodo A, Davis A, Marshak A (1997) Wavelet based multifractal analysis of rough surfaces: Application to cloud models and satellite data. Phys Rev Lett 79:75–78CrossRefGoogle Scholar
  41. 41.
    Decoster N, Roux SG, Arneodo A (2000) A wavelet‐based method for multifractal image analysis, II. Applications to synthetic multifractal rough surfaces. Eur Phys J B 15:739–764CrossRefGoogle Scholar
  42. 42.
    Arneodo A, Decoster N, Roux SG (1999) Intermittency, log‐normal statistics, and multifractal cascade process in high‐resolution satellite images of cloud structure. Phys Rev Lett 83:1255–1258CrossRefGoogle Scholar
  43. 43.
    Roux SG, Arneodo A, Decoster N (2000) A wavelet‐based method for multifractal image analysis, III. Applications to high‐resolution satellite images of cloud structure. Eur Phys J B 15:765–786CrossRefGoogle Scholar
  44. 44.
    Khalil A, Joncas G, Nekka F, Kestener P, Arneodo A (2006) Morphological analysis of H I features, II. Wavelet‐based multifractal formalism. Astrophys J Suppl Ser 165:512–550CrossRefGoogle Scholar
  45. 45.
    Kestener P, Lina J-M, Saint-Jean P, Arneodo A (2001) Wavelet‐based multifractal formalism to assist in diagnosis in digitized mammograms. Image Anal Stereol 20:169–174MATHCrossRefGoogle Scholar
  46. 46.
    Arneodo A, Decoster N, Kestener P, Roux SG (2003) A wavelet‐based method for multifractal image analysis: From theoretical concepts to experimental applications. Adv Imaging Electr Phys 126:1–92CrossRefGoogle Scholar
  47. 47.
    Kestener P, Arneodo A (2003) Three‐dimensional wavelet‐based multifractal method: The need for revisiting the multifractal description of turbulence dissipation data. Phys Rev Lett 91:194501CrossRefGoogle Scholar
  48. 48.
    Meneveau C, Sreenivasan KR (1991) The multifractal nature of turbulent energy‐dissipation. J Fluid Mech 224:429–484MATHCrossRefGoogle Scholar
  49. 49.
    Kestener P, Arneodo A (2004) Generalizing the wavelet‐based multifractal formalism to random vector fields: Application to three‐dimensional turbulence velocity and vorticity data. Phys Rev Lett 93:044501CrossRefGoogle Scholar
  50. 50.
    Kestener P, Arneodo A (2007) A multifractal formalism for vector‐valued random fields based on wavelet analysis: Application to turbulent velocity and vorticity 3D numerical data. Stoch Environ Res Risk Assess. doi:10.1007/s00477-007-0121-6
  51. 51.
    Li WT, Marr TG, Kaneko K (1994) Understanding long-range correlations in DNA‐sequences. Physica D 75:392–416MATHCrossRefGoogle Scholar
  52. 52.
    Stanley HE, Buldyrev SV, Goldberger AL, Havlin S, Ossadnik SM, Peng C-K, Simons M (1993) Fractal landscapes in biological systems. Fractals 1:283–301MATHCrossRefGoogle Scholar
  53. 53.
    Li W (1990) Mutual information functions versus correlation‐functions. J Stat Phys 60:823–837MATHCrossRefGoogle Scholar
  54. 54.
    Li W (1992) Generating non trivial long-range correlations and \({1/f}\) spectra by replication and mutation. Int J Bifurc Chaos 2:137–154MATHCrossRefGoogle Scholar
  55. 55.
    Azbel' MY (1995) Universality in a DNA statistical structure. Phys Rev Lett 75:168–171CrossRefGoogle Scholar
  56. 56.
    Herzel H, Große I (1995) Measuring correlations in symbol sequences. Physica A 216:518–542Google Scholar
  57. 57.
    Voss RF (1992) Evolution of long-range fractal correlations and \({1/f}\) noise in DNA base sequences. Phys Rev Lett 68:3805–3808CrossRefGoogle Scholar
  58. 58.
    Voss RF (1994) Long-range fractal correlations in DNA introns and exons. Fractals 2:1–6CrossRefGoogle Scholar
  59. 59.
    Peng C-K, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE (1992) Long-range correlations in nucleotide sequences. Nature 356:168–170CrossRefGoogle Scholar
  60. 60.
    Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Peng C‑K, Simons M, Stanley HE (1995) Statistical and linguistic features of DNA sequences. Fractals 3:269–284Google Scholar
  61. 61.
    Mantegna RN, Buldyrev SV, Goldberger AL, Havlin S, Peng C‑K, Simons M, Stanley HE (1995) Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics. Phys Rev E 52:2939–2950Google Scholar
  62. 62.
    Herzel H, Ebeling W, Schmitt A (1994) Entropies of biosequences: The role of repeats. Phys Rev E 50:5061–5071CrossRefGoogle Scholar
  63. 63.
    Li W (1997) The measure of compositional heterogeneity in DNA sequences is related to measures of complexity. Complexity 3:33–37CrossRefGoogle Scholar
  64. 64.
    Borštnik B, Pumpernik D, Lukman D (1993) Analysis of apparent \({1/f^\alpha}\) spectrum in DNA sequences. Europhys Lett 23:389–394Google Scholar
  65. 65.
    Chatzidimitriou‐Dreismann CA, Larhammar D (1993) Long-range correlations in DNA. Nature 361:212–213Google Scholar
  66. 66.
    Nee S (1992) Uncorrelated DNA walks. Nature 357:450CrossRefGoogle Scholar
  67. 67.
    Viswanathan GM, Buldyrev SV, Havlin S, Stanley HE (1998) Long-range correlation measures for quantifying patchiness: Deviations from uniform power-law scaling in genomic DNA. Physica A 249:581–586CrossRefGoogle Scholar
  68. 68.
    Buldyrev SV, Goldberger AL, Havlin S, Mantegna RN, Matsa ME, Peng C-K, Simons M, Stanley HE (1995) Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys Rev E 51:5084–5091CrossRefGoogle Scholar
  69. 69.
    Berthelsen CL, Glazier JA, Raghavachari S (1994) Effective multifractal spectrum of a random walk. Phys Rev E 49:1860–1864CrossRefGoogle Scholar
  70. 70.
    Li W (1997) The study of correlation structures of DNA sequences: A critical review. Comput Chem 21:257–271CrossRefGoogle Scholar
  71. 71.
    Peng C-K, Buldyrev SV, Goldberger AL, Havlin S, Simons M, Stanley HE (1993) Finite‐size effects on long-range correlations: Implications for analyzing DNA sequences. Phys Rev E 47:3730–3733CrossRefGoogle Scholar
  72. 72.
    Bernardi G (2000) Isochores and the evolutionary genomics of vertebrates. Gene 241:3–17CrossRefGoogle Scholar
  73. 73.
    Gardiner K (1996) Base composition and gene distribution: Critical patterns in mammalian genome organization. Trends Genet 12:519–524CrossRefGoogle Scholar
  74. 74.
    Li W, Stolovitzky G, Bernaola-Galván P, Oliver JL (1998) Compositional heterogeneity within, and uniformity between, DNA sequences of yeast chromosomes. Genome Res 8:916–928Google Scholar
  75. 75.
    Karlin S, Brendel V (1993) Patchiness and correlations in DNA sequences. Science 259:677–680CrossRefGoogle Scholar
  76. 76.
    Larhammar D, Chatzidimitriou-Dreismann CA (1993) Biological origins of long-range correlations and compositional variations in DNA. Nucleic Acids Res 21:5167–5170CrossRefGoogle Scholar
  77. 77.
    Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689CrossRefGoogle Scholar
  78. 78.
    Arneodo A, d'Aubenton-Carafa Y, Audit B, Bacry E, Muzy J‑F, Thermes C (1998) Nucleotide composition effects on the long-range correlations in human genes. Eur Phys J B 1:259–263Google Scholar
  79. 79.
    Vaillant C, Audit B, Arneodo A (2005) Thermodynamics of DNA loops with long-range correlated structural disorder. Phys Rev Lett 95:068101CrossRefGoogle Scholar
  80. 80.
    Vaillant C, Audit B, Thermes C, Arneodo A (2006) Formation and positioning of nucleosomes: effect of sequence‐dependent long-range correlated structural disorder. Eur Phys J E 19:263–277CrossRefGoogle Scholar
  81. 81.
    Yuan G-C, Liu Y-J, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome‐scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630CrossRefGoogle Scholar
  82. 82.
    Vaillant C, Audit B, Arneodo A (2007) Experiments confirm the influence of genome long-range correlations on nucleosome positioning. Phys Rev Lett 99:218103CrossRefGoogle Scholar
  83. 83.
    Moukhtar J, Fontaine E, Faivre-Moskalenko C, Arneodo A (2007) Probing persistence in DNA curvature properties with atomic force microscopy. Phys Rev Lett 98:178101CrossRefGoogle Scholar
  84. 84.
    Chargaff E (1951) Structure and function of nucleic acids as cell constituents. Fed Proc 10:654–659Google Scholar
  85. 85.
    Rudner R, Karkas JD, Chargaff E (1968) Separation of B. subtilis DNA into complementary strands, 3. Direct analysis. Proc Natl Acad Sci USA 60:921–922CrossRefGoogle Scholar
  86. 86.
    Fickett JW, Torney DC, Wolf DR (1992) Base compositional structure of genomes. Genomics 13:1056–1064CrossRefGoogle Scholar
  87. 87.
    Lobry JR (1995) Properties of a general model of DNA evolution under no‐strand‐bias conditions. J Mol Evol 40:326–330CrossRefGoogle Scholar
  88. 88.
    Beletskii A, Grigoriev A, Joyce S, Bhagwat AS (2000) Mutations induced by bacteriophage T7 RNA polymerase and their effects on the composition of the T7 genome. J Mol Biol 300:1057–1065CrossRefGoogle Scholar
  89. 89.
    Francino MP, Ochman H (2001) Deamination as the basis of strand‐asymmetric evolution in transcribed Escherichia coli sequences. Mol Biol Evol 18:1147–1150CrossRefGoogle Scholar
  90. 90.
    Frank AC, Lobry JR (1999) Asymmetric substitution patterns: A review of possible underlying mutational or selective mechanisms. Gene 238:65–77CrossRefGoogle Scholar
  91. 91.
    Freeman JM, Plasterer TN, Smith TF, Mohr SC (1998) Patterns of genome organization in bacteria. Science 279:1827CrossRefGoogle Scholar
  92. 92.
    Mrázek J, Karlin S (1998) Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci USA 95:3720–3725Google Scholar
  93. 93.
    Rocha EP, Danchin A, Viari A (1999) Universal replication biases in bacteria. Mol Microbiol 32:11–16CrossRefGoogle Scholar
  94. 94.
    Tillier ER, Collins RA (2000) The contributions of replication orientation, gene direction, and signal sequences to base‐composition asymmetries in bacterial genomes. J Mol Evol 50:249–257Google Scholar
  95. 95.
    Green P, Ewing B, Miller W, Thomas PJ, Green ED (2003) Transcription‐associated mutational asymmetry in mammalian evolution. Nat Genet 33:514–517CrossRefGoogle Scholar
  96. 96.
    Touchon M, Nicolay S, Arneodo A, d'Aubenton-Carafa Y, Thermes C (2003) Transcription‐coupled TA and GC strand asymmetries in the human genome. FEBS Lett 555:579–582CrossRefGoogle Scholar
  97. 97.
    Touchon M, Arneodo A, d'Aubenton-Carafa Y, Thermes C (2004) Transcription‐coupled and splicing‐coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res 32:4969–4978CrossRefGoogle Scholar
  98. 98.
    Brodie of Brodie E-B, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A (2005) From DNA sequence analysis to modeling replication in the human genome. Phys Rev Lett 94:248103CrossRefGoogle Scholar
  99. 99.
    Nicolay S, Argoul F, Touchon M, d'Aubenton-Carafa Y, Thermes C, Arneodo A (2004) Low frequency rhythms in human DNA sequences: A key to the organization of gene location and orientation? Phys Rev Lett 93:108101CrossRefGoogle Scholar
  100. 100.
    Touchon M, Nicolay S, Audit B, Brodie of Brodie E-B, d'Aubenton-Carafa Y, Arneodo A, Thermes C (2005) Replication‐associated strand asymmetries in mammalian genomes: Toward detection of replication origins. Proc Natl Acad Sci USA 102:9836–9841CrossRefGoogle Scholar
  101. 101.
    Huvet M, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y, Arneodo A, Thermes C (2007) Human gene organization driven by the coordination of replication and transcription. Genome Res 17:1278–1285CrossRefGoogle Scholar
  102. 102.
    Arneodo A, Bacry E, Jaffard S, Muzy J-F (1997) Oscillating singularities on Cantor sets: A grand‐canonical multifractal formalism. J Stat Phys 87:179–209MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Arneodo A, Bacry E, Jaffard S, Muzy J-F (1998) Singularity spectrum of multifractal functions involving oscillating singularities. J Fourier Anal Appl 4:159–174MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Parisi G, Frisch U (1985) Fully developed turbulence and intermittency. In: Ghil M, Benzi R, Parisi G (eds) Turbulence and predictability in geophysical fluid dynamics and climate dynamics. Proc of Int School. North‐Holland, Amsterdam, pp 84–88Google Scholar
  105. 105.
    Collet P, Lebowitz J, Porzio A (1987) The dimension spectrum of some dynamical systems. J Stat Phys 47:609–644MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Grassberger P, Badii R, Politi A (1988) Scaling laws for invariant measures on hyperbolic and non hyperbolic attractors. J Stat Phys 51:135–178MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI (1986) Fractal measures and their singularities: The characterization of strange sets. Phys Rev A 33:1141–1151MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Paladin G, Vulpiani A (1987) Anomalous scaling laws in multifractal objects. Phys Rep 156:147–225MathSciNetCrossRefGoogle Scholar
  109. 109.
    Rand D (1989) The singularity spectrum for hyperbolic Cantor sets and attractors. Ergod Th Dyn Syst 9:527–541MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Argoul F, Arneodo A, Elezgaray J, Grasseau G (1990) Wavelet analysis of the self‐similarity of diffusion‐limited aggregates and electrodeposition clusters. Phys Rev A 41:5537–5560MathSciNetCrossRefGoogle Scholar
  111. 111.
    Farmer JD, Ott E, Yorke JA (1983) The dimension of chaotic attractors. Physica D 7:153–180MathSciNetCrossRefGoogle Scholar
  112. 112.
    Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Bohr T, Tèl T (1988) The thermodynamics of fractals. In: Hao BL (ed) Direction in chaos, vol 2. World Scientific, Singapore, pp 194–237Google Scholar
  114. 114.
    Audit B, Nicolay S, Huvet M, Touchon M, d'Aubenton-Carafa Y, Thermes C, Arneodo A (2007) DNA replication timing data corroborate in silico human replication origin predictions. Phys Rev Lett 99:248102CrossRefGoogle Scholar
  115. 115.
    Mandelbrot BB, van Ness JW (1968) Fractional Brownian motions, fractal noises and applications. SIAM Rev 10:422–437MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    Arneodo A, Bacry E, Muzy JF (1998) Random cascades on wavelet dyadic trees. J Math Phys 39:4142–4164MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Benzi R, Biferale L, Crisanti A, Paladin G, Vergassola M, Vulpiani A (1993) A random process for the construction of multiaffine fields. Physica D 65:352–358MATHCrossRefGoogle Scholar
  118. 118.
    Mandelbrot BB (1974) Intermittent turbulence in self‐similar cascades: Divergence of high moments and dimension of the carrier. J Fluid Mech 62:331–358MATHCrossRefGoogle Scholar
  119. 119.
    Arneodo A, Bacry E, Manneville S, Muzy JF (1998) Analysis of random cascades using space-scale correlation functions. Phys Rev Lett 80:708–711CrossRefGoogle Scholar
  120. 120.
    Castaing B, Dubrulle B (1995) Fully‐developed turbulence – A unifying point-of-view. J Phys II France 5:895–899CrossRefGoogle Scholar
  121. 121.
    Novikov EA (1994) Infinitely divisible distributions in turbulence. Phys Rev E 50:3303–3305CrossRefGoogle Scholar
  122. 122.
    Gojobori T, Li WH, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18:360–369CrossRefGoogle Scholar
  123. 123.
    Li WH, Wu CI, Luo CC (1984) Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J Mol Evol 21:58–71CrossRefGoogle Scholar
  124. 124.
    Petrov DA, Hartl DL (1999) Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci USA 96:1475–1479CrossRefGoogle Scholar
  125. 125.
    Zhang Z, Gerstein M (2003) Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res 31:5338–5348CrossRefGoogle Scholar
  126. 126.
    Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12:640–649CrossRefGoogle Scholar
  127. 127.
    Shioiri C, Takahata N (2001) Skew of mononucleotide frequencies, relative abundance of dinucleotides, and DNA strand asymmetry. J Mol Evol 53:364–376CrossRefGoogle Scholar
  128. 128.
    Svejstrup JQ (2002) Mechanisms of transcription‐coupled DNA repair. Nat Rev Mol Cell Biol 3:21–29CrossRefGoogle Scholar
  129. 129.
    Nicolay S, Brodie of Brodie E-B, Touchon M, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A (2007) Bifractality of human DNA strand‐asymmetry profiles results from transcription. Phys Rev E 75:032902CrossRefGoogle Scholar
  130. 130.
    Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, ichi Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125:301–313CrossRefGoogle Scholar
  131. 131.
    Jacob F, Brenner S, Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harb Symp Quant Biol 28:329–342CrossRefGoogle Scholar
  132. 132.
    Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374CrossRefGoogle Scholar
  133. 133.
    Anglana M, Apiou F, Bensimon A, Debatisse M (2003) Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing. Cell 114:385–394CrossRefGoogle Scholar
  134. 134.
    Fisher D, Méchali M (2003) Vertebrate HoxB gene expression requires DNA replication. EMBO J 22:3737–3748Google Scholar
  135. 135.
    Gerbi SA, Bielinsky AK (2002) DNA replication and chromatin. Curr Opin Genet Dev 12:243–248CrossRefGoogle Scholar
  136. 136.
    Hyrien O, Méchali M (1993) Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J 12:4511–4520Google Scholar
  137. 137.
    Schübeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M (2002) Genome‐wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing. Nat Genet 32:438–442Google Scholar
  138. 138.
    Gilbert DM (2001) Making sense of eukaryotic DNA replication origins. Science 294:96–100CrossRefGoogle Scholar
  139. 139.
    Coverley D, Laskey RA (1994) Regulation of eukaryotic DNA replication. Annu Rev Biochem 63:745–776CrossRefGoogle Scholar
  140. 140.
    Sasaki T, Sawado T, Yamaguchi M, Shinomiya T (1999) Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster. Mol Cell Biol 19:547–555Google Scholar
  141. 141.
    Bogan JA, Natale DA, Depamphilis ML (2000) Initiation of eukaryotic DNA replication: Conservative or liberal? J Cell Physiol 184:139–150CrossRefGoogle Scholar
  142. 142.
    Gilbert DM (2004) In search of the holy replicator. Nat Rev Mol Cell Biol 5:848–855CrossRefGoogle Scholar
  143. 143.
    Demeret C, Vassetzky Y, Méchali M (2001) Chromatin remodeling and DNA replication: From nucleosomes to loop domains. Oncogene 20:3086–3093Google Scholar
  144. 144.
    McNairn AJ, Gilbert DM (2003) Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25:647–656CrossRefGoogle Scholar
  145. 145.
    Méchali M (2001) DNA replication origins: From sequence specificity to epigenetics. Nat Rev Genet 2:640–645Google Scholar
  146. 146.
    Arneodo A, d'Aubenton-Carafa Y, Audit B, Brodie of Brodie E-B, Nicolay S, St-Jean P, Thermes C, Touchon M, Vaillant C (2007) DNA in chromatin: From genome‐wide sequence analysis to the modeling of replication in mammals. Adv Chem Phys 135:203–252CrossRefGoogle Scholar
  147. 147.
    Bulmer M (1991) Strand symmetry of mutation rates in the beta‐globin region. J Mol Evol 33:305–310CrossRefGoogle Scholar
  148. 148.
    Francino MP, Ochman H (2000) Strand symmetry around the beta‐globin origin of replication in primates. Mol Biol Evol 17:416–422CrossRefGoogle Scholar
  149. 149.
    Gierlik A, Kowalczuk M, Mackiewicz P, Dudek MR, Cebrat S (2000) Is there replication‐associated mutational pressure in the Saccharomyces cerevisiae genome? J Theor Biol 202:305–314CrossRefGoogle Scholar
  150. 150.
    Berezney R, Dubey DD, Huberman JA (2000) Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108:471–484CrossRefGoogle Scholar
  151. 151.
    Vassilev LT, Burhans WC, DePamphilis ML (1990) Mapping an origin of DNA replication at a single‐copy locus in exponentially proliferating mammalian cells. Mol Cell Biol 10:4685–4689Google Scholar
  152. 152.
    Codlin S, Dalgaard JZ (2003) Complex mechanism of site‐specific DNA replication termination in fission yeast. EMBO J 22:3431–3440CrossRefGoogle Scholar
  153. 153.
    Little RD, Platt TH, Schildkraut CL (1993) Initiation and termination of DNA replication in human rRNA genes. Mol Cell Biol 13:6600–6613Google Scholar
  154. 154.
    Santamaria D, Viguera E, Martinez‐Robles ML, Hyrien O, Hernandez P, Krimer DB, Schvartzman JB (2000) Bi‐directional replication and random termination. Nucleic Acids Res 28:2099–2107Google Scholar
  155. 155.
    White EJ, Emanuelsson O, Scalzo D, Royce T, Kosak S, Oakeley EJ, Weissman S, Gerstein M, Groudine M, Snyder M, Schübeler D (2004) DNA replication‐timing analysis of human chromosome 22 at high resolution and different developmental states. Proc Natl Acad Sci USA 101:17771–17776Google Scholar
  156. 156.
    Woodfine K, Beare DM, Ichimura K, Debernardi S, Mungall AJ, Fiegler H, Collins VP, Carter NP, Dunham I (2005) Replication timing of human chromosome 6. Cell Cycle 4:172–176CrossRefGoogle Scholar
  157. 157.
    Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, Lockhart DJ, Davis RW, Brewer BJ, Fangman WL (2001) Replication dynamics of the yeast genome. Science 294:115–121CrossRefGoogle Scholar
  158. 158.
    Watanabe Y, Fujiyama A, Ichiba Y, Hattori M, Yada T, Sakaki Y, Ikemura T (2002) Chromosome‐wide assessment of replication timing for human chromosomes 11q and 21q: Disease‐related genes in timing‐switch regions. Hum Mol Genet 11:13–21CrossRefGoogle Scholar
  159. 159.
    Costantini M, Clay O, Federico C, Saccone S, Auletta F, Bernardi G (2007) Human chromosomal bands: Nested structure, high‐definition map and molecular basis. Chromosoma 116:29–40CrossRefGoogle Scholar
  160. 160.
    Schmegner C, Hameister H, Vogel W, Assum G (2007) Isochores and replication time zones: A perfect match. Cytogenet Genome Res 116:167–172CrossRefGoogle Scholar
  161. 161.
    Chakalova L, Debrand E, Mitchell JA, Osborne CS, Fraser P (2005) Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 6:669–677CrossRefGoogle Scholar
  162. 162.
    Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA (2004) Chromatin architecture of the human genome: Gene-rich domains are enriched in open chromatin fibers. Cell 118:555–566CrossRefGoogle Scholar
  163. 163.
    Hurst LD, Pál C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5:299–310Google Scholar
  164. 164.
    Sproul D, Gilbert N, Bickmore WA (2005) The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6:775–781CrossRefGoogle Scholar
  165. 165.
    MacAlpine DM, Rodriguez HK, Bell SP (2004) Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18:3094–3105CrossRefGoogle Scholar
  166. 166.
    Danis E, Brodolin K, Menut S, Maiorano D, Girard-Reydet C, Méchali M (2004) Specification of a DNA replication origin by a transcription complex. Nat Cell Biol 6:721–730Google Scholar
  167. 167.
    DePamphilis ML (2005) Cell cycle dependent regulation of the origin recognition complex. Cell Cycle 4:70–79CrossRefGoogle Scholar
  168. 168.
    Ghosh M, Liu G, Randall G, Bevington J, Leffak M (2004) Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity. Mol Cell Biol 24:10193–10207CrossRefGoogle Scholar
  169. 169.
    Lin CM, Fu H, Martinovsky M, Bouhassira E, Aladjem MI (2003) Dynamic alterations of replication timing in mammalian cells. Curr Biol 13:1019–1028CrossRefGoogle Scholar
  170. 170.
    Jeon Y, Bekiranov S, Karnani N, Kapranov P, Ghosh S, MacAlpine D, Lee C, Hwang DS, Gingeras TR, Dutta A (2005) Temporal profile of replication of human chromosomes. Proc Natl Acad Sci USA 102:6419–6424CrossRefGoogle Scholar
  171. 171.
    Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272:1030–1033CrossRefGoogle Scholar
  172. 172.
    Takeuchi Y, Horiuchi T, Kobayashi T (2003) Transcription‐dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17:1497–1506CrossRefGoogle Scholar
  173. 173.
    Rocha EPC, Danchin A (2003) Essentiality, not expressiveness, drives gene‐strand bias in bacteria. Nat Genet 34:377–378CrossRefGoogle Scholar
  174. 174.
    Herrick J, Stanislawski P, Hyrien O, Bensimon A (2000) Replication fork density increases during DNA synthesis in X. laevis egg extracts. J Mol Biol 300:1133–1142CrossRefGoogle Scholar
  175. 175.
    Zlatanova J, Leuba SH (2003) Chromatin fibers, one-at-a-time. J Mol Biol 331:1–19CrossRefGoogle Scholar
  176. 176.
    Tassius C, Moskalenko C, Minard P, Desmadril M, Elezgaray J, Argoul F (2004) Probing the dynamics of a confined enzyme by surface plasmon resonance. Physica A 342:402–409CrossRefGoogle Scholar
  177. 177.
    Müller WG, Rieder D, Kreth G, Cremer C, Trajanoski Z, McNally JG (2004) Generic features of tertiary chromatin structure as detected in natural chromosomes. Mol Cell Biol 24:9359–9370Google Scholar

Books and Reviews

  1. 178.
    Fractals Google Scholar
  2. 179.
    Aharony A, Feder J (eds) (1989) Fractals in Physics, Essays in Honour of BB Mandelbrot. Physica D 38. North-Holland, AmsterdamGoogle Scholar
  3. 180.
    Avnir D (ed) (1988) The fractal approach to heterogeneous chemistry: surfaces, colloids, polymers. Wiley, New-YorkGoogle Scholar
  4. 181.
    Barabàsi AL, Stanley HE (1995) Fractals concepts in surface growth. Cambridge University Press, CambridgeGoogle Scholar
  5. 182.
    Ben Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, CambridgeGoogle Scholar
  6. 183.
    Bouchaud J-P, Potters M (1997) Théorie des risques financiers. Cambridge University Press, CambridgeGoogle Scholar
  7. 184.
    Bunde A, Havlin S (eds) (1991) Fractals and disordered systems. Springer, BerlinMATHGoogle Scholar
  8. 185.
    Bunde A, Havlin S (eds) (1994) Fractals in science. Springer, BerlinMATHGoogle Scholar
  9. 186.
    Bunde A, Kropp J, Schellnhuber HJ (eds) (2002) The science of disasters: Climate disruptions, heart attacks and market crashes. Springer, BerlinGoogle Scholar
  10. 187.
    Family F, Meakin P, Sapoval B, Wood R (eds) (1995) Fractal aspects of materials. Material Research Society Symposium Proceedings, vol 367. MRS, PittsburgGoogle Scholar
  11. 188.
    Family F, Vicsek T (1991) Dynamics of fractal surfaces. World Scientific, SingaporeMATHGoogle Scholar
  12. 189.
    Feder J (1988) Fractals. Pergamon, New-YorkMATHGoogle Scholar
  13. 190.
    Frisch U (1995) Turbulence. Cambridge University Press, CambridgeMATHGoogle Scholar
  14. 191.
    Mandelbrot BB (1982) The Fractal Geometry of Nature. Freeman, San FranciscoMATHGoogle Scholar
  15. 192.
    Mantegna RN, Stanley HE (2000) An introduction to econophysics. Cambridge University Press, CambridgeGoogle Scholar
  16. 193.
    Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, CambridgeMATHGoogle Scholar
  17. 194.
    Peitgen HO, Jürgens H, Saupe D (1992) Chaos and fractals: New frontiers of science. Springer, New YorkGoogle Scholar
  18. 195.
    Peitgen HO, Saupe D (eds) (1987) The science of fractal images. Springer, New-YorkGoogle Scholar
  19. 196.
    Pietronero L, Tosatti E (eds) (1986) Fractals in physics. North‐Holland, AmsterdamGoogle Scholar
  20. 197.
    Stanley HE, Osbrowski N (eds) (1986) On growth and form: Fractal and non‐fractal patterns in physics. Martinus Nijhof, DordrechtMATHGoogle Scholar
  21. 198.
    Stanley HE, Ostrowski N (eds) (1988) Random fluctuations and pattern growth. Kluwer, DordrechtGoogle Scholar
  22. 199.
    Vicsek T (1989) Fractal growth phenomena. World Scientific, SingaporeGoogle Scholar
  23. 200.
    Vicsek T, Schlesinger M, Matsuchita M (eds) (1994) Fractals in natural science. World Scientific, SingaporeGoogle Scholar
  24. 201.
    West BJ (1990) Fractal physiology and chaos in medicine. World Scientific, SingaporeMATHGoogle Scholar
  25. 202.
    West BJ, Deering W (1994) Fractal physiology for physicists: Levy statistics. Phys Rep 246:1–100CrossRefGoogle Scholar
  26. 203.
    Wilkinson GG, Kanellopoulos J, Megier J (eds) (1995) Fractals in geoscience and remote sensing, image understanding research senes, vol 1. ECSC-EC-EAEC, BrusselsGoogle Scholar
  27. 204.
    Wavelets Google Scholar
  28. 205.
    Abry P (1997) Ondelettes et turbulences. Diderot Éditeur, Art et Sciences, ParisGoogle Scholar
  29. 206.
    Arneodo A, Argoul F, Bacry E, Elezgaray J, Muzy J-F (1995) Ondelettes, multifractales et turbulences: de l'ADN aux croissances cristallines. Diderot Éditeur, Art et Sciences, ParisGoogle Scholar
  30. 207.
    Chui CK (1992) An introduction to wavelets. Academic Press, BostonMATHGoogle Scholar
  31. 208.
    Combes J-M, Grossmann A, Tchamitchian P (eds) (1989) Wavelets. Springer, BerlinMATHGoogle Scholar
  32. 209.
    Daubechies I (1992) Ten lectures on wavelets. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  33. 210.
    Erlebacher G, Hussaini MY, Jameson LM (eds) (1996) Wavelets: Theory and applications. Oxford University Press, OxfordMATHGoogle Scholar
  34. 211.
    Farge M, Hunt JCR, Vassilicos JC (eds) (1993) Wavelets, fractals and Fourier. Clarendon Press, OxfordMATHGoogle Scholar
  35. 212.
    Flandrin P (1993) Temps-Fréquence. Hermès, ParisGoogle Scholar
  36. 213.
    Holschneider M (1996) Wavelets: An analysis tool. Oxford University Press, OxfordGoogle Scholar
  37. 214.
    Jaffard S, Meyer Y, Ryan RD (eds) (2001) Wavelets: Tools for science and technology. SIAM, PhiladelphiaMATHGoogle Scholar
  38. 215.
    Lemarie PG (ed) (1990) Les ondelettes en 1989. Springer, BerlinMATHGoogle Scholar
  39. 216.
    Mallat S (1998) A wavelet tour in signal processing. Academic Press, New-YorkGoogle Scholar
  40. 217.
    Meyer Y (1990) Ondelettes. Herman, ParisGoogle Scholar
  41. 218.
    Meyer Y (ed) (1992) Wavelets and applications. Springer, BerlinGoogle Scholar
  42. 219.
    Meyer Y, Roques S (eds) (1993) Progress in wavelets analysis and applications. Éditions Frontières, Gif-sur-YvetteMATHGoogle Scholar
  43. 220.
    Ruskai MB, Beylkin G, Coifman R, Daubechies I, Mallat S, Meyer Y, Raphael L (eds) (1992) Wavelets and their applications. Jones and Barlett, BostonMATHGoogle Scholar
  44. 221.
    Silverman BW, Vassilicos JC (eds) (2000) Wavelets: The key to intermittent information? Oxford University Press, OxfordGoogle Scholar
  45. 222.
    Torresani B (1998) Analyse continue par ondelettes. Éditions de Physique, Les UlisGoogle Scholar
  46. 223.
    DNA and Chromatin Google Scholar
  47. 224.
    Alberts B, Watson J (1994) Molecular biology of the cell, 3rd edn. Garland Publishing, New-YorkGoogle Scholar
  48. 225.
    Calladine CR, Drew HR (1999) Understanding DNA. Academic Press, San DiegoGoogle Scholar
  49. 226.
    Graur D, Li WH (1999) Fundamentals of molecular evolution. Sinauer Associates, SunderlandGoogle Scholar
  50. 227.
    Hartl DL, Jones EW (2001) Genetics: Analysis of genes and genomes. Jones and Bartlett, SudburyGoogle Scholar
  51. 228.
    Kolchanov NA, Lim HA (1994) Computer analysis of genetic macromolecules: Structure, function and evolution. World Scientific, SingaporeCrossRefGoogle Scholar
  52. 229.
    Kornberg A, Baker TA (1992) DNA Replication. WH Freeman, New-YorkGoogle Scholar
  53. 230.
    Lewin B (1994) Genes V. Oxford University Press, OxfordGoogle Scholar
  54. 231.
    Sudbery P (1998) Human molecular genetics. Addison Wesley, SingaporeGoogle Scholar
  55. 232.
    Van Holde, KE (1988) Chromatin. Springer, New-YorkGoogle Scholar
  56. 233.
    Watson JD, Gilman M, Witkowski J, Zoller M (1992) Recombinant DNA. Freeman, New-YorkGoogle Scholar
  57. 234.
    Wolfe AP (1998) Chromatin structure and function, 3rd edn. Academic Press, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alain Arneodo
    • 1
  • Benjamin Audit
    • 1
  • Edward-Benedict Brodie of Brodie
    • 1
  • Samuel Nicolay
    • 2
  • Marie Touchon
    • 3
    • 5
  • Yves d'Aubenton-Carafa
    • 4
  • Maxime Huvet
    • 4
  • Claude Thermes
    • 4
  1. 1.Laboratoire Joliot–Curie and Laboratoire de PhysiqueENS-Lyon CNRSLyon CedexFrance
  2. 2.Institut de MathématiqueUniversité de LiègeLiègeBelgium
  3. 3.Génétique des Génomes Bactériens, Institut PasteurCNRSParisFrance
  4. 4.Centre de Génétique MoléculaireCNRSGif-sur-YvetteFrance
  5. 5.Atelier de BioinformatiqueUniversité Pierre et Marie CurieParisFrance