Mathematics of Complexity and Dynamical Systems

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Ergodic Theory: Fractal Geometry

  • Jörg Schmeling
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1806-1_18

Article Outline

Glossary

Definition of the Subject

Introduction

Preliminaries

Brief Tour Through Some Examples

Dimension Theory of Low-Dimensional Dynamical Systems – Young's Dimension Formula

Dimension Theory of Higher-Dimensional Dynamical Systems

Hyperbolic Measures

General Theory

Endomorphisms

Multifractal Analysis

Future Directions

Bibliography

Keywords

Entropy Manifold 
This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    Afraimovich VS, Schmeling J, Ugalde J, Urias J (2000) Spectra of dimension for Poincaré recurrences. Discret Cont Dyn Syst 6(4):901–914MathSciNetMATHGoogle Scholar
  2. 2.
    Afraimovich VS, Chernov NI, Sataev EA (1995) Statistical Properties of 2D Generalized Hyperbolic Attractors. Chaos 5:238–252MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aihua F, Yunping J, Jun W (2005) Asymptotic Hausdorff dimensions of Cantor sets associated with an asymptotically non‐hyperbolic family. Ergod Theory Dynam Syst 25(6):1799–1808MATHCrossRefGoogle Scholar
  4. 4.
    Alexander J, Yorke J (1984) Fat Baker's transformations. Erg Th Dyn Syst 4:1–23MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Ambroladze A, Schmeling J (2004) Lyapunov exponents are not stable with respect to arithmetic subsequences. In: Fractal geometry and stochastics III. Progr Probab 57. Birkhäuser, Basel, pp 109–116CrossRefGoogle Scholar
  6. 6.
    Artin E (1965) Ein mechanisches System mit quasi‐ergodischen Bahnen, Collected papers. Addison Wesley, pp 499–501Google Scholar
  7. 7.
    Barreira L () Variational properties of multifractal spectra. IST preprintGoogle Scholar
  8. 8.
    Barreira L (1995) Cantor sets with complicated geometry and modeled by general symbolic dynamics. Random Comp Dyn 3:213–239MathSciNetMATHGoogle Scholar
  9. 9.
    Barreira L (1996) A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Erg Th Dyn Syst 16:871–927MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Barreira L (1996) A non-additive thermodynamic formalism and dimension theory of hyperbolic dynamical systems. Math Res Lett 3:499–509MathSciNetMATHGoogle Scholar
  11. 11.
    Barreira L, Saussol B (2001) Hausdorff dimension of measure via Poincaré recurrence. Comm Math Phys 219(2):443–463MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Barreira L, Saussol B (2001) Multifractal analysis of hyperbolic flows. Comm Math Phys 219(2):443–463MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Barreira L, Saussol B (2001) Variational principles and mixed multifractal spectra. Trans Amer Math Soc 353(10):3919–3944 (electronic)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Barreira L, Schmeling J (2000) Sets of “Non‐typical” Points Have Full Topological Entropy and Full Hausdorff Dimension. Isr J Math 116:29–70MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Barreira L, Pesin Y, Schmeling J (1997) Multifractal spectra and multifractal rigidity for horseshoes. J Dyn Contr Syst 3:33–49MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Barreira L, Pesin Y, Schmeling J (1997) On a General Concept of Multifractal Rigidity: Multifractal Spectra For Dimensions, Entropies, and Lyapunov Exponents. Multifractal Rigidity. Chaos 7:27–38MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Barreira L, Pesin Y, Schmeling J (1999) Dimension and Product Structure of Hyperbolic Measures. Annals Math 149:755–783MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Barreira L, Saussol B, Schmeling J (2002) Distribution of frequencies of digits via multifractal analysis. J Number Theory 97(2):410–438MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Barreira L, Saussol B, Schmeling J (2002) Higher–dimensional multifractal analysis. J Math Pures Appl (9) 81(1):67–91MathSciNetGoogle Scholar
  20. 20.
    Belykh VP (1982) Models of discrete systems of phase synchronization. In: Shakhildyan VV, Belynshina LN (eds) Systems of Phase Synchronization. Radio i Svyaz, Moscow, pp 61–176Google Scholar
  21. 21.
    Billingsley P (1978) Ergodic Theory and Information. KriegerGoogle Scholar
  22. 22.
    Blinchevskaya M, Ilyashenko Y (1999) Estimate for the Entropy Dimension Of The Maximal Attractor For \({k-}\)Constracting Systems In An Infinite‐Dimensional Space. Russ J Math Phys 6(1):20–26MathSciNetMATHGoogle Scholar
  23. 23.
    Boshernitzan M (1993) Quantitative recurrence results. Invent Math 113:617–631MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Bothe H-G (1995) The Hausdorff dimension of certain solenoids. Erg Th Dyn Syst 15:449–474MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Bousch T (2000) Le poisson n'a pas d'arêtes. Ann IH Poincaré (Prob-Stat) 36(4):489–508MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Bowen R (1973) Topological entropy for noncompact sets. Trans Amer Math Soc 184:125–136MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bowen R (1979) Hausdorff Dimension Of Quasi‐circles. Publ Math IHES 50:11–25MathSciNetMATHGoogle Scholar
  28. 28.
    Bylov D, Vinograd R, Grobman D, Nemyckii V (1966) Theory of Lyapunov exponents and its application to problems of stability. Izdat “Nauka”, Moscow (in Russian)Google Scholar
  29. 29.
    Casdagli M, Sauer T, Yorke J (1991) Embedology. J Stat Phys 65:589–616MathSciNetGoogle Scholar
  30. 30.
    Ciliberto S, Eckmann JP, Kamphorst S, Ruelle D (1971) Liapunov Exponents from Times. Phys Rev A 34Google Scholar
  31. 31.
    Collet P, Lebowitz JL, Porzio A (1987) The Dimension Spectrum of Some Dynamical Systems. J Stat Phys 47:609–644MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Constantin P, Foias C (1988) Navier‐Stokes Equations. Chicago U PressGoogle Scholar
  33. 33.
    Cruchfield J, Farmer D, Packard N, Shaw R (1980) Geometry from a Time Series. Phys Rev Lett 45:712–724CrossRefGoogle Scholar
  34. 34.
    Cutler C (1990) Connecting Ergodicity and Dimension in Dynamical Systems. Ergod Th Dynam Syst 10:451–462MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Denjoy A (1932) Sur les courbes défines par les équations différentielles á la surface du tore. J Math Pures Appl 2:333–375Google Scholar
  36. 36.
    Ding M, Grebogi C, Ott E, Yorke J (1993) Estimating correlation dimension from a chaotic times series: when does the plateau onset occur? Phys D 69:404–424MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Dodson M, Rynne B, Vickers J (1990) Diophantine approximation and a lower bound for Hausdorff dimension. Mathematika 37:59–73MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Douady A, Oesterle J (1980) Dimension de Hausdorff Des Attracteurs. CRAS 290:1135–1138MathSciNetMATHGoogle Scholar
  39. 39.
    Eggleston HG (1952) Sets of Fractional Dimension Which Occur in Some Problems of Number Theory. Proc Lond Math Soc 54:42–93MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ellis R (1984) Large Deviations for a General Class of Random Vectors. Ann Prob 12:1–12MATHCrossRefGoogle Scholar
  41. 41.
    Ellis R (1985) Entropy, Large Deviations, and Statistical Mechanics. SpringerGoogle Scholar
  42. 42.
    Falconer K (1990) Fractal Geometry, Mathematical Foundations and Applications. Cambridge U Press, CambridgeMATHGoogle Scholar
  43. 43.
    Fan AH, Feng DJ, Wu J (2001) Recurrence, dimension and entropy. J Lond Math Soc 64(2):229–244MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Frederickson P, Kaplan J, Yorke E, Yorke J (1983) The Liapunov Dimension Of Strange Attractors. J Differ Equ 49:185–207MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Frostman O (1935) Potential d'équilibre Et Capacité des Ensembles Avec Quelques Applications à la Théorie des Fonctions. Meddel Lunds Univ Math Sem 3:1–118Google Scholar
  46. 46.
    Furstenberg H (1967) Disjointness in Ergodic Theory, Minimal Sets, and a Problem in Diophantine Approximation. Math Syst Theory 1:1–49MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Furstenberg H (1970) Intersections of Cantor Sets and Transversality of Semigroups I. In: Problems in Analysis. Sympos Salomon Bochner, Princeton Univ. Princeton Univ Press, pp 41–59Google Scholar
  48. 48.
    Gatzouras D, Peres Y (1996) The variational principle for Hausdorff dimension: A survey, in Ergodic theory of \({\mathbb{Z}^d}\) actions. In: Pollicott M et al (ed) Proc of the Warwick symposium. Cambridge University Press. Lond Math Soc Lect Note Ser 228:113–125MathSciNetGoogle Scholar
  49. 49.
    Grassberger P, Procaccia I, Hentschel H (1983) On the Characterization of Chaotic Motions, Lect Notes. Physics 179:212–221Google Scholar
  50. 50.
    Halsey T, Jensen M, Kadanoff L, Procaccia I, Shraiman B (1986) Fractal Measures and Their Singularities: The Characterization of Strange Sets. Phys Rev A 33(N2):1141–1151MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Hasselblatt B (1994) Regularity of the Anosov splitting and of horospheric foliations. Ergod Theory Dynam Syst 14(4):645–666MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Hasselblatt B, Schmeling J (2004) Dimension product structure of hyperbolic sets. In: Modern dynamical systems and applications. Cambridge Univ Press, Cambridge, pp 331–345Google Scholar
  53. 53.
    Henley D (1992) Continued Fraction Cantor Sets, Hausdorff Dimension, and Functional Analysis. J Number Theory 40:336–358MathSciNetCrossRefGoogle Scholar
  54. 54.
    Hentschel HGE, Procaccia I (1983) The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors. Physica 8D:435–444MathSciNetGoogle Scholar
  55. 55.
    Herman MR (1979) Sur la conjugaison différentiable des difféomorphismes du cercle á des rotations. Publications de l'Institute de Mathématiques des Hautes Études Scientifiques 49:5–234Google Scholar
  56. 56.
    Hunt B (1996) Maximal Local Lyapunov Dimension Bounds The Box Dimension Of Chaotic Attractors. Nonlinearity 9:845–852MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Iommi G (2005) Multifractal analysis for countable Markov shifts. Ergod Theory Dynam Syst 25(6):1881–1907MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Jarnik V (1931) Über die simultanen diophantischen Approximationen. Math Zeitschr 33:505–543MathSciNetCrossRefGoogle Scholar
  59. 59.
    Jenkinson O (2001) Rotation, entropy, and equilibrium states. Trans Amer Math Soc 353:3713–3739MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Kalinin B, Sadovskaya V (2002) On pointwise dimension of non‐hyperbolic measures. Ergod Theory Dynam Syst 22(6):1783–1801MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Kaplan JL, Yorke JA (1979) Functional differential equations and approximation of fixed points. Lecture Notes. In: Mathematics vol 730. Springer, Berlin, pp 204–227Google Scholar
  62. 62.
    Katznelson Y, Weiss B (1982) A simple proof of some ergodic theorems. Isr J of Math 42:291–296MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Kenyon R, Peres Y (1996) Measure of full dimension on affine invariant sets. Erg Th Dyn Syst 16:307–323MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Kesseböhmer M (1999) Multifrakale und Asymptotiken grosser Deviationen. Thesis U Göttingen, GöttingenGoogle Scholar
  65. 65.
    Kingman JFC (1968) The ergodic theory of subadditive stochastic processes. J Royal Stat Soc B30:499–510MathSciNetMATHGoogle Scholar
  66. 66.
    Kleinbock D, Margulis G (1998) Flows on Homogeneous Spaces and Diophantine Approximation on Manifold. Ann Math 148:339–360MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Kra B, Schmeling J (2002) Diophantine classes, dimension and Denjoy maps. Acta Arith 105(4):323–340MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Ledrappier F (1981) Some Relations Between Dimension And Lyapounov Exponents. Comm Math Phys 81:229–238MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Ledrappier F (1986) Dimension of invariant measures. Proceedings of the conference on ergodic theory and related topics II (Georgenthal, 1986). Teubner–texte Math 94:137–173Google Scholar
  70. 70.
    Ledrappier F, Misiurewicz M (1985) Dimension of Invariant Measures for Maps with Exponent Zero. Ergod Th Dynam Syst 5:595–610MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Ledrappier F, Strelcyn JM (1982) A proof of the estimate from below in Pesin's entropy formula. Ergod Theory Dynam Syst 2:203–219MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Ledrappier F, Young LS (1985) The Metric Entropy Of Diffeomorphisms. I Characterization Of Measures Satisfying Pesin's Entropy Formula. Ann Math 122:509–539MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Ledrappier F, Young LS (1985) The Metric Entropy Of Diffeomorphisms, II. Relations Between Entropy, Exponents and Dimension. Ann Math 122:540–574MathSciNetCrossRefGoogle Scholar
  74. 74.
    Lopes A (1989) The Dimension Spectrum of the Maximal Measure. SIAM J Math Analysis 20:1243–1254MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Mauldin RD, Urbański M (1996) Dimensions and measures in infinite iterated function systems. Proc Lond Math Soc 73(1):105–154Google Scholar
  76. 76.
    Mauldin RD, Urbański M (2002) Fractal measures for parabolic IFS. Adv Math 168(2):225–253Google Scholar
  77. 77.
    Mauldin DR, Urbański M (2003) Graph directed Markov systems. Geometry and dynamics of limit sets Cambridge Tracts in Mathematics, 148. Cambridge University Press, CambridgeGoogle Scholar
  78. 78.
    Mauldin RD; Urbański M (2000) Parabolic iterated function systems. Ergod Theory Dynam Syst 20(5):1423–1447Google Scholar
  79. 79.
    McCluskey H, Manning A (1983) Hausdorff Dimension For Horseshoes. Erg Th Dyn Syst 3:251–260MathSciNetCrossRefGoogle Scholar
  80. 80.
    Moran P (1946) Additive Functions Of Intervals and Hausdorff Dimension. Proceedings Of Cambridge Philosophical Society 42:15–23Google Scholar
  81. 81.
    Moreira C, Yoccoz J (2001) Stable Intersections of Cantor Sets with Large Hausdorff Dimension. Ann of Math (2) 154(1):45–96MathSciNetCrossRefGoogle Scholar
  82. 82.
    Mãné R (1981) On the Dimension of Compact Invariant Sets for Certain Nonlinear Maps. Lecture Notes in Mathematics, vol 898. SpringerGoogle Scholar
  83. 83.
    Mãné R (1990) The Hausdorff Dimension of Horseshoes of Surfaces. Bol Soc Bras Math 20:1–24Google Scholar
  84. 84.
    Neunhäuserer J (1999) An analysis of dimensional theoretical properties of some affine dynamical systems. Thesis. Free University Berlin, BerlinGoogle Scholar
  85. 85.
    Oseledets V (1968) A multiplicative ergodic theorem. Liapunov characteristic numbers for dynamical systems. Trans Moscow Math Soc 19:197–221MATHGoogle Scholar
  86. 86.
    Ott E, Sauer T, Yorke J (1994) Part I Background. In: Coping with chaos. Wiley Ser Nonlinear Sci, Wiley, New York, pp 1–62Google Scholar
  87. 87.
    Palis J, Takens F (1987) Hyperbolicity And The Creation Of Homoclinic Orbits. Ann Math 125:337–374MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Palis J, Takens F (1993) Hyperbolicity And Sensitive Chaotic Dynamics At Homoclinic Bifurcations. Cambridge U Press, CambridgeMATHGoogle Scholar
  89. 89.
    Palis J, Takens F (1994) Homoclinic Tangencies For Hyperbolic Sets Of Large Hausdorff Dimension. Acta Math 172:91–136MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    Palis J, Viana M (1988) On the continuity of Hausdorff dimension and limit capacity for horseshoes. Lecture Notes in Math, vol 1331. SpringerGoogle Scholar
  91. 91.
    Pesin Y (1977) Characteristic exponents and smooth ergodic theory. Russian Math Surveys 32(4):55–114MathSciNetCrossRefGoogle Scholar
  92. 92.
    Pesin Y (1992) Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties. Erg Th Dyn Syst 12:123–151MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Pesin Y (1993) On Rigorous Mathematical Definition of Correlation Dimension and Generalized Spectrum for Dimensions. J Statist Phys 71(3–4):529–547MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Pesin Y (1997) Dimension Theory In Dynamical Systems: Rigorous Results And Applications. Cambridge U Press, CambridgeGoogle Scholar
  95. 95.
    Pesin Y (1997) Dimension theory in dynamical systems: contemporary views and applications. In: Chicago Lectures in Mathematics. Chicago University Press, ChicagoGoogle Scholar
  96. 96.
    Pesin Y, Pitskel' B (1984) Topological pressure and the variational principle for noncompact sets. Funct Anal Appl 18:307–318MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Pesin Y, Sadovskaya V (2001) Multifractal analysis of conformal axiom A flows. Comm Math Phys 216(2):277–312MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Pesin Y, Tempelman A (1995) Correlation Dimension of Measures Invariant Under Group Actions. Random Comput Dyn 3(3):137–156MathSciNetMATHGoogle Scholar
  99. 99.
    Pesin Y, Weiss H (1994) On the Dimension of Deterministic and Random Cantor‐like Sets. Math Res Lett 1:519–529MathSciNetMATHGoogle Scholar
  100. 100.
    Pesin Y, Weiss H (1996) On The Dimension Of Deterministic and Random Cantor‐like Sets, Symbolic Dynamics, And The Eckmann‐Ruelle Conjecture. Comm Math Phys 182:105–153MathSciNetMATHCrossRefGoogle Scholar
  101. 101.
    Pesin Y, Weiss H (1997) A Multifractal Analysis of Equilibrium Measures For Conformal Expanding Maps and Moran-like Geometric Constructions. J Stat Phys 86:233–275MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Pesin Y, Weiss H (1997) The Multifractal Analysis of Gibbs Measures: Motivation. Mathematical Foundation and Examples. Chaos 7:89–106MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Petersen K (1983) Ergodic theory. Cambridge studies in advanced mathematics 2. Cambridge Univ Press, CambridgeCrossRefGoogle Scholar
  104. 104.
    Pollicott M, Weiss H (1994) The Dimensions Of Some Self Affine Limit Sets In The Plane And Hyperbolic Sets. J Stat Phys 77:841–866MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Pollicott M, Weiss H (1999) Multifractal Analysis for the Continued Fraction and Manneville‐Pomeau Transformations and Applications to Diophantine Approximation. Comm Math Phys 207(1):145–171MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Przytycki F, Urbański M (1989) On Hausdorff Dimension of Some Fractal Sets. Studia Math 93:155–167Google Scholar
  107. 107.
    Ruelle D (1978) Thermodynamic Formalism. Addison‐WesleyGoogle Scholar
  108. 108.
    Ruelle D (1982) Repellers For Real Analytic Maps. Erg Th Dyn Syst 2:99–107MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    Schmeling J (1994) Hölder Continuity of the Holonomy Maps for Hyperbolic basic Sets II. Math Nachr 170:211–225MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Schmeling J (1997) Symbolic Dynamics for Beta‐shifts and Self‐Normal Numbers. Erg Th Dyn Syst 17:675–694MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    Schmeling J (1998) A dimension formula for endomorphisms – the Belykh family. Erg Th Dyn Syst 18:1283–1309MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    Schmeling J (1999) On the Completeness of Multifractal Spectra. Erg Th Dyn Syst 19:1–22MathSciNetCrossRefGoogle Scholar
  113. 113.
    Schmeling J (2001) Entropy Preservation under Markov Codings. J Stat Phys 104(3–4):799–815MathSciNetMATHCrossRefGoogle Scholar
  114. 114.
    Schmeling J, Troubetzkoy S (1998) Dimension and invertibility of hyperbolic endomorphisms with singularities. Erg Th Dyn Syst 18:1257–1282MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Schmeling J, Weiss H (2001) Dimension theory and dynamics. AMS Proceedings of Symposia in Pure Mathematics series 69:429–488Google Scholar
  116. 116.
    Series C (1985) The Modular Surface and Continued Fractions. J Lond Math Soc 31:69–80MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Simon K (1997) The Hausdorff dimension of the general Smale–Williams solenoidwith different contraction coefficients. Proc Am Math Soc 125:1221–1228MATHCrossRefGoogle Scholar
  118. 118.
    Simpelaere D (1994) Dimension Spectrum of Axiom-A Diffeomorphisms, II. Gibbs Measures. J Stat Phys 76:1359–1375MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Solomyak B (1995) On the random series \({\sum\pm\lambda\sp n}\) (an Erdös problem). Ann of Math (2) 142(3):611–625MathSciNetCrossRefGoogle Scholar
  120. 120.
    Solomyak B (2004) Notes on Bernoulli convolutions. In: Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Proc Sympos Pure Math, 72, Part 1. Amer Math Soc, Providence, pp 207–230CrossRefGoogle Scholar
  121. 121.
    Stratmann B (1995) Fractal Dimensions for Jarnik Limit Sets of Geometrically Finite Kleinian Groups; The Semi‐Classical Approach. Ark Mat 33:385–403MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    Takens F (1981) Detecting Strange Attractors in Turbulence. Lecture Notes in Mathematics, vol 898. SpringerGoogle Scholar
  123. 123.
    Takens F, Verbitzki E (1999) Multifractal analysis of local entropies for expansive homeomorphisms with specification. Comm Math Phys 203:593–612MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Walters P (1982) Introduction to Ergodic Theory. SpringerGoogle Scholar
  125. 125.
    Weiss H (1992) Some Variational Formulas for Hausdorff Dimension, Topological Entropy, and SRB Entropy for Hyperbolic Dynamical System. J Stat Phys 69:879–886MATHCrossRefGoogle Scholar
  126. 126.
    Weiss H (1999) The Lyapunov Spectrum Of Equilibrium Measures for Conformal Expanding Maps and Axiom-A Surface Diffeomorphisms. J Statist Phys 95(3–4):615–632MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Young LS (1981) Capacity of Attractors. Erg Th Dyn Syst 1:381–388MATHCrossRefGoogle Scholar
  128. 128.
    Young LS (1982) Dimension, Entropy, and Lyapunov Exponents. Erg Th Dyn Syt 2:109–124MATHCrossRefGoogle Scholar

Books and Reviews

  1. 129.
    Bowen R (1975) Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, vol 470. SpringerGoogle Scholar
  2. 130.
    Eckmann JP, Ruelle D (1985) Ergodic Theory Of Chaos And Strange Attractors. Rev Mod Phys 57:617–656MathSciNetCrossRefGoogle Scholar
  3. 131.
    Federer H (1969) Geometric measure theory. SpringerGoogle Scholar
  4. 132.
    Hasselblatt B, Katok A (2002) Handbook of Dynamical Systems, vol 1, Survey 1. Principal Structures. ElsevierGoogle Scholar
  5. 133.
    Katok A (1980) Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst Hautes Études Sci Publ Math 51:137–173MathSciNetMATHCrossRefGoogle Scholar
  6. 134.
    Katok A, Hasselblatt B (1995) Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ Press, CambridgeMATHCrossRefGoogle Scholar
  7. 135.
    Keller G (1998) Equilibrium states in ergodic theory. In: London Mathematical Society Student Texts 42. Cambridge University Press, CambridgeGoogle Scholar
  8. 136.
    Mañé R (1987) Ergodic theory and differentiable dynamics. In: Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Band 8. SpringerGoogle Scholar
  9. 137.
    Mario R, Urbański M (2005) Regularity properties of Hausdorff dimension in infinite conformal iterated function systems. Ergod Theory Dynam Syst 25(6):1961–1983Google Scholar
  10. 138.
    Mattila P (1995) Geometry of sets and measures in Euclidean spaces. In: Fractals and rectifiability. Cambridge University Press, CambridgeGoogle Scholar
  11. 139.
    Pugh C, Shub M (1989) Ergodic attractors. Trans Amer Math Soc 312(1):1–54MathSciNetMATHCrossRefGoogle Scholar
  12. 140.
    Takens F (1988) Limit capacity and Hausdorff dimension of dynamically defined Cantor sets. Lecture Notes in Math, vol 1331. SpringerGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jörg Schmeling
    • 1
  1. 1.Center for Mathematical SciencesLund UniversityLundSweden