Mathematics of Complexity and Dynamical Systems

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Dynamics of Parametric Excitation

  • Alan Champneys
Reference work entry

Article Outline


Definition of the Subject


Linear Resonance or Nonlinear Instability?

Multibody Systems

Continuous Systems

Future Directions



Periodic Solution Multibody System Parametric Resonance Parametric Excitation Mathieu Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Acheson D (1993) A pendulum theorem. Proc Roy Soc Lond A 443:239–245MATHCrossRefGoogle Scholar
  2. 2.
    Acheson D (1995) Multiple‐nodding oscillations of a driven inverted pendulum. Proc Roy Soc Lond A 448:89–95MATHCrossRefGoogle Scholar
  3. 3.
    Acheson D, Mullin T (1993) Upside‐down pendulums. Nature 366:215–216CrossRefGoogle Scholar
  4. 4.
    Acheson D, Mullin T (1998) Ropy magic. New Scientist February 157:32–33Google Scholar
  5. 5.
    Benjamin T (1961) Dynamics of a system of articulated pipes conveying fluid. 1. Theory. Proc Roy Soc Lond A 261:457–486MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Benjamin T, Ursell F (1954) The stability of a plane free surface of a liquid in vertical periodic motion. Proc Roy Soc Lond A 255:505–515MathSciNetGoogle Scholar
  7. 7.
    Broer H, Levi M (1995) Geometrical aspects of stability theory for Hills equations. Arch Ration Mech Anal 131:225–240MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Broer H, Vegter G (1992) Bifurcation aspects of parametric resonance. Dynamics Reported (new series) 1:1–53MathSciNetCrossRefGoogle Scholar
  9. 9.
    Broer H, Hoveijn I, van Noort M (1998) A reversible bifurcation analysis of the inverted pendulum. Physica D 112:50–63MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Case W (1996) The pumping of a swing from the standing position. Am J Phys 64:215–220CrossRefGoogle Scholar
  11. 11.
    Case W, Swanson M (1990) The pumping of a swing from the seated position. Am J Phys 58:463–467CrossRefGoogle Scholar
  12. 12.
    Champneys A (1991) Homoclinic orbits in the dynamics of articulated pipes conveying fluid. Nonlinearity 4:747–774MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Champneys A (1993) Homoclinic tangencies in the dynamics of articulated pipes conveying fluid. Physica D 62:347–359MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Champneys A, Fraser W (2000) The ‘Indian rope trick’ for a continuously flexible rod; linearized analysis. Proc Roy Soc Lond A 456:553–570MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Champneys A, Fraser W (2004) Resonance tongue interaction in the parametrically excited column. SIAM J Appl Math 65:267–298MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Cortez R, Peskin C, Stockie J, Varela D (2004) Parametric resonance in immersed elastic boundaries. SIAM J Appl Math 65:494–520MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Curry S (1976) How children swing. Am J Phys 44:924–926CrossRefGoogle Scholar
  18. 18.
    Cvitanovic P (1984) Universality in Chaos. Adam Hilger, BristolMATHGoogle Scholar
  19. 19.
    Faraday M (1831) On the forms of states of fluids on vibrating elastic surfaces. Phil Trans Roy Soc Lond 52:319–340Google Scholar
  20. 20.
    Fraser W, Champneys A (2002) The ‘Indian rope trick’ for a parametrically excited flexible rod: nonlinear and subharmonic analysis. Proc Roy Soc Lond A 458:1353–1373MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Galan J (2002) Personal communicationGoogle Scholar
  22. 22.
    Galán J, Fraser W, Acheson D, Champneys A (2005) The parametrically excited upside‐down rod: an elastic jointed pendulum model. J Sound Vibration 280:359–377Google Scholar
  23. 23.
    Gattulli V, Lepidi M (2003) Nonlinear interactions in the planar dynamics of cable‐stayed beam. Int J Solids Struct 40:4729–4748Google Scholar
  24. 24.
    Gattulli V, Lepidi M, Macdonald J, Taylor C (2005) One-to-two global‐local interaction in a cable‐stayed beam observed through analytical, finite element and experimental models. Int J Nonlin Mech 40:571–588MATHCrossRefGoogle Scholar
  25. 25.
    Gordon J, Haus H (1986) Random walk of coherently amplified solitons in optical fiber transmission. Opt Lett 11:665–666CrossRefGoogle Scholar
  26. 26.
    Greenhill A (1881) Determination of the greatest height consistent with stability that a pole or mast can be made. Proceedings of the Cambridge Philosophical Society IV, Oct 1880 – May 1883, pp 65–73Google Scholar
  27. 27.
    Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New YorkMATHGoogle Scholar
  28. 28.
    Hasegawa A, Tappert F (1991) Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres. i. anomolous dispersion. Appl Phys Lett 23:142–144CrossRefGoogle Scholar
  29. 29.
    Hill G (1886) On the part of the motion of lunar perigee which is a function of the mean motions of the sun and moon. Acta Math 8:1–36MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Hoyle R (2005) Pattern Formation; An Introduction to Methods. CUP, CambridgeGoogle Scholar
  31. 31.
    Ince E (1956) Ordinary Differential Equations. Dover, New YorkGoogle Scholar
  32. 32.
    Jones C (2003) Creating stability from instability. In: Nonlinear dynamics and chaos; where do we go from here? IOP Publishing, Bristol, chap 4, pp 73–90Google Scholar
  33. 33.
    Jordan DW, Smith P (1998) Nonlinear Ordinary Differential Equations, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Kapitza P (1951) Dinamicheskaya ustoichivost mayatnika pri koleblyushcheisya tochke podvesa. Z Eksperimentalnoi I Teoreticheskoi Fiziki 21:588–597, in RussianGoogle Scholar
  35. 35.
    Knoz F, Forysiak W, Doran N (1995) 10 gbit\({/s}\) soliton communication systems over standard fiber at 1.55\({\mu m}\) and the use of dispersion compensation. IEEE J Lightwave Technol 13:1960–1995Google Scholar
  36. 36.
    Kumar K, Tuckerman L (1994) Parametric instability of the interface between two fluids. J Fluid Mech 279:49–68MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Kuznetsov YA (2004) Elements of Applied Bifurcation Theory, 3rd edn. Springer, New YorkMATHCrossRefGoogle Scholar
  38. 38.
    Lin C, Kogelnik H, Cohen L (1980) Optical‐pulse equilization of low‐dispersion transmission in single fibers in the 1.3–1.7\({\mu m}\) spectral region. Opt Lett 5:476–480CrossRefGoogle Scholar
  39. 39.
    Lloyd D, Sandstede B, Avitabilie D, Champneys A (2008) Localized hexagon patterns in the planar swift‐hohenberg equation. To appear in SIAM Appl Dyn SysGoogle Scholar
  40. 40.
    Magnus W, Winkler S (1979) Hill's Equation. Dover, New YorkGoogle Scholar
  41. 41.
    Mailybayev A, Seyranian AP (2001) Parametric resonance in systems with small dissipation. PMM J App Math Mech 65:755–767Google Scholar
  42. 42.
    Mathieu E (1868) Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique. J Math Pure Appl 13:137–203Google Scholar
  43. 43.
    Mollenauer L, Stolen R, Gordon J (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett 45:1095–1097CrossRefGoogle Scholar
  44. 44.
    Mullin A, Champneys T, Fraser W, Galan J, Acheson D (2003) The ‘Indian wire trick’ via parametric excitation: a comparison between theory and experiment. Proc Roy Soc Lond A 459:539–546MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Nayfeh A (2000) Nonlinear Interactions: Analytical, Computational and Experimental Methods. Wiley Interscience, New YorkMATHGoogle Scholar
  46. 46.
    Otterbein S (1982) Stabilization of the N‑pendulum and the Indian link trick. Arch Rat Mech Anal 78:381–393MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Païdoussis MP, Li G (1993) Pipes conveying fluid: a model dynamical problem. J Fluids Structures 7:137–204Google Scholar
  48. 48.
    Piccoli B, Kulkarni J (2005) Pumping a swing by standing and squatting: Do children pump time optimally? IEEE Control Systems Magazine 25:48–56CrossRefGoogle Scholar
  49. 49.
    Post A, de Groot G, Daffertshofer A, Beek P (2007) Pumping a playground swing. Motor Control 11:136–150Google Scholar
  50. 50.
    Rayliegh L (1883) On the crispations of fluid resting upon a vibrating support. Phil Mag 16:50Google Scholar
  51. 51.
    Romeiras F, Romeiras F, Bondeson A, Ott E, Antonsen TM, Grebogi C (1989) Quasiperiodic forcing and the observability of strange nonchaotic attractors. Phys Scr 40:442–444MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Semler C, Païdoussis M (1996) Nonlinear analysis of the parametric resonances of a planar fluid‐conveying cantilevered pipe. J Fluids Structures 10:787–825Google Scholar
  53. 53.
    Stephenson A (1908) On a new type of dynamical stability. Mem Proc Manch Lit Phil Soc 52:1–10Google Scholar
  54. 54.
    Suzuki M, Morita N, Edagawa I, Yamamoto S, Taga H, Akiba S (1995) Reduction of gordon‐haas timing jitter by periodic dispersion compensation in soliton transmission. Electron Lett 31:2027–2035CrossRefGoogle Scholar
  55. 55.
    Tabor M (1989) Chaos and Integrability in Nonlinear Dynamics: An Introduction. Wiley, New YorkMATHGoogle Scholar
  56. 56.
    Thomsen J (1995) Chaotic dynamics of the partially follower‐loaded elastic double pendulum. J Sound Vibr 188:385–405MathSciNetCrossRefGoogle Scholar
  57. 57.
    Thomsen J (2003) Vibrations and stability: advanced theory, analysis, and tools, 2nd edn. Springer, New YorkGoogle Scholar
  58. 58.
    Tondl A, Ruijgrok T, Verhulst F, Nabergoj R (2000) Autoparametric Resonance in Mechanical Systems. Cambridge University Press, CambridgeMATHGoogle Scholar
  59. 59.
    Truman M, Galán J, Champneys A (2008) An example of difference combination resonance. In preparationGoogle Scholar
  60. 60.
    Turytsyn S, Shapiro E, Medvedev S, Fedoruk M, Mezentsev V (2003) Physics and mathematics of dispersion‐managed optical solitons. CR Physique 4:145–161CrossRefGoogle Scholar
  61. 61.
    Umbanhowar PB, Melo F, Swinney HL (1996) Localized excitations in a vertically vibrated granular layer. Nature 382:793–796Google Scholar
  62. 62.
    Vanderbauwhede A (1990) Subharmonic branching in reversible‐systems. SIAM J Math Anal 21:954–979MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    van der Pol B, Strutt M (1928) On the stability of the solutions of mathieu's equation. Phil Mag 5:18–38, sp. Iss. 7th SeriesMATHGoogle Scholar
  64. 64.
    van Noort M (2001) The parametrically forced pendulum. a case study in 1 \({{1} / {2}}\) degree of freedom. Ph D thesis, RU GroningenGoogle Scholar
  65. 65.
    Verhulst F (2000) Nonlinear Differential Equations and Dynamical Systems. Springer, New YorkGoogle Scholar
  66. 66.
    Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and squids. Nature pp 33–36Google Scholar
  67. 67.
    Wiggins S (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New YorkMATHGoogle Scholar
  68. 68.
    Yakubovich VA, Starzhinskii VM (1987) Pammetric Resonance in Linear Systems. Nauka, Moscow, in RussianGoogle Scholar
  69. 69.
    Zakharov V, Shabat A (1971) Exact theory of two‐dimensional self focussing and one‐dimensional modulation of waves in nonlinear media. Sov Phys JETP 33:77–83Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alan Champneys
    • 1
  1. 1.Department of Engineering MathematicsUniversity of BristolBristolUnited Kingdom