Skip to main content

Vehicular Traffic: A Review of Continuum Mathematical Models

  • Reference work entry
Mathematics of Complexity and Dynamical Systems

Article Outline

Glossary

Definition of the Subject

Introduction

Macroscopic Modeling

Kinetic Modeling

Road Networks

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Mathematical model:

Simplified description of a real world system in mathematical terms, e. g., by means of differential equations or other suitable mathematical structures.

Scale of observation/representation:

Level of detail at which a system is observed and mathematically modeled.

Macroscopic scale:

Scale of observation focusing on the evolution in time and space of some macroscopic quantities of the system at hand; that is, quantities that can be experimentally observed and measured.

Kinetic scale:

Scale of representation focusing on a statistical description of the evolution of the microscopic states of the system at hand.

Vehicular traffic:

The overall dynamics produced by cars or other transports in motion along a road.

Road network:

A set of roads connected to one another by junctions.

Bibliography

  1. Arlotti L, Bellomo N, De Angelis E (2002) Generalized kinetic (Boltzmann) models: mathematical structures and applications. Math Models Methods Appl Sci 12(4):567–591

    Article  MathSciNet  MATH  Google Scholar 

  2. Armbruster D, Degond P, Ringhofer C (2006) A model for the dynamics of large queuing networks and supply chains. SIAM J Appl Math (electronic) 66(3):896–920

    Article  MathSciNet  MATH  Google Scholar 

  3. Aw A, Rascle M (2000) Resurrection of “second order” models of traffic flow. SIAM J Appl Math 60(3):916–938

    Article  MathSciNet  MATH  Google Scholar 

  4. Aw A, Klar A, Materne T, Rascle M (2002) Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J Appl Math (electronic) 63(1):259–278

    Article  MathSciNet  MATH  Google Scholar 

  5. Banda MK, Herty M, Klar A (2006) Gas flow in pipeline networks. Netw Heterog Media (electronic) 1(1):41–56

    Article  MathSciNet  MATH  Google Scholar 

  6. Bardos C, le Roux AY, Nédélec JC (1979) First order quasilinear equations with boundary conditions. Comm Partial Differential Equations 4(9):1017–1034

    Google Scholar 

  7. Bellomo N (2007) Modelling complex living systems. A kinetic theory and stochastic game approach. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston

    Google Scholar 

  8. Bellomo N, Coscia V (2005) First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow. C R Mec 333:843–851

    Article  MATH  Google Scholar 

  9. Bellomo N, Lachowicz M, Polewczak J, Toscani G (1991) Mathematical topics in nonlinear kinetic theory II. The Enskog equation. Series on Advances in Mathematics for Applied Sciences, vol 1. World Scientific Publishing, Teaneck

    Book  Google Scholar 

  10. Bellomo N, Delitala M, Coscia V (2002) On the mathematical theory of vehicular traffic flow I. Fluid dynamic and kinetic modelling. Math Models Methods Appl Sci 12(12):1801–1843

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben-Naim E, Krapivsky PL (1998) Steady-state properties of traffic flows. J Phys A 31(40):8073–8080

    Article  MathSciNet  MATH  Google Scholar 

  12. Ben-Naim E, Krapivsky PL (2003) Kinetic theory of traffic flows. Traffic Granul Flow 1:155

    Article  Google Scholar 

  13. Berthelin F, Degond P, Delitala M, Rascle M (2008) A model for the formation and evolution of traffic jams. Arch Ration Mech Anal 187(2):185–220

    Article  MathSciNet  MATH  Google Scholar 

  14. Bertotti ML, Delitala M (2004) From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences. Math Models Methods Appl Sci 14(7):1061–1084

    Article  MathSciNet  MATH  Google Scholar 

  15. Bonzani I (2000) Hydrodynamic models of traffic flow: drivers' behaviour and nonlinear diffusion. Math Comput Modelling 31(6–7):1–8

    Article  MathSciNet  MATH  Google Scholar 

  16. Bonzani I, Mussone L (2002) Stochastic modelling of traffic flow. Math Comput Model 36(1–2):109–119

    Article  MathSciNet  MATH  Google Scholar 

  17. Bonzani I, Mussone L (2003) From experiments to hydrodynamic traffic flow models I. Modelling and parameter identification. Math Comput Model 37(12–13):1435–1442

    Article  MathSciNet  MATH  Google Scholar 

  18. Bressan A (2000) Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem. In: Oxford Lecture Series in Mathematics and its Applications, vol 20. Oxford University Press, Oxford

    Google Scholar 

  19. Cercignani C, Lampis M (1988) On the kinetic theory of a dense gas of rough spheres. J Stat Phys 53(3–4):655–672

    Article  MathSciNet  MATH  Google Scholar 

  20. Chakroborty P, Agrawal S, Vasishtha K (2004) Microscopic modeling of driver behavior in uninterrupted traffic flow. J Transp Eng 130(4):438–451

    Article  Google Scholar 

  21. Chitour Y, Piccoli B (2005) Traffic circles and timing of traffic lights for cars flow. Discret Contin Dyn Syst Ser B 5(3):599–630

    Article  MathSciNet  MATH  Google Scholar 

  22. Coclite GM, Garavello M, Piccoli B (2005) Traffic flow on a road network. SIAM J Math Anal (electronic) 36(6):1862–1886

    Article  MathSciNet  MATH  Google Scholar 

  23. Colombo RM (2002) A \({2\times 2}\) hyperbolic traffic flow model, traffic flow – modelling and simulation. Math Comput Model 35(5–6):683–688

    Article  MathSciNet  MATH  Google Scholar 

  24. Colombo RM (2002) Hyperbolic phase transitions in traffic flow. SIAM J Appl Math 63(2):708–721

    Article  MathSciNet  MATH  Google Scholar 

  25. Colombo RM, Garavello M (2006) A well posed Riemann problem for the p‑system at a junction. Netw Heterog Media (electronic) 1(3):495–511

    Article  MathSciNet  MATH  Google Scholar 

  26. Coscia V, Delitala M, Frasca P (2007) On the mathematical theory of vehicular traffic flow, II. Discrete velocity kinetic models. Int J Non-Linear Mech 42(3):411–421

    Article  MathSciNet  MATH  Google Scholar 

  27. Dafermos CM (2005) Hyperbolic conservation laws in continuum physics. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol 325, 2nd edn. Springer, Berlin

    Google Scholar 

  28. Daganzo CF (1995) Requiem for second-order fluid approximation of traffic flow. Transp Res 29B(4):277–286

    Article  Google Scholar 

  29. D'Apice C, Manzo R (2006) A fluid dynamic model for supply chains. Netw Heterog Media (electronic) 1(3):379–398

    Article  MathSciNet  MATH  Google Scholar 

  30. D'Apice C, Piccoli B (2008) Vertex flow models for network traffic. Math Models Methods Appl Sci (submitted)

    Google Scholar 

  31. D'Apice C, Manzo R, Piccoli B (2006) Packet flow on telecommunication networks. SIAM J Math Anal (electronic) 38(3):717–740

    Article  MathSciNet  MATH  Google Scholar 

  32. De Angelis E (1999) Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems. Math Comput Model 29(7):83–95

    Article  MATH  Google Scholar 

  33. Delitala M, Tosin A (2007) Mathematical modeling of vehicular traffic: a discrete kinetic theory approach. Math Models Methods Appl Sci 17(6):901–932

    Article  MathSciNet  MATH  Google Scholar 

  34. Garavello M, Piccoli B (2006) Traffic flow on networks. In: AIMS Series on Applied Mathematics, vol 1. American Institute of Mathematical Sciences (AIMS), Springfield

    Google Scholar 

  35. Garavello M, Piccoli B (2006) Traffic flow on a road network using the Aw–Rascle model. Comm Partial Differ Equ 31(1–3):243–275

    Article  MathSciNet  MATH  Google Scholar 

  36. Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res 9:545–567

    Article  MathSciNet  MATH  Google Scholar 

  37. Göttlich S, Herty M, Klar A (2006) Modelling and optimization of supply chains on complex networks. Commun Math Sci 4(2):315–330

    Google Scholar 

  38. Greenberg JM (2001/02) Extensions and amplifications of a traffic model of Aw and Rascle. SIAM J Appl Math (electronic) 62(3):729–745

    Google Scholar 

  39. Günther M, Klar A, Materne T, Wegener R (2002) An explicitly solvable kinetic model for vehicular traffic and associated macroscopic equations. Math Comput Model 35(5–6):591–606

    Google Scholar 

  40. Günther M, Klar A, Materne T, Wegener R (2003) Multivalued fundamental diagrams and stop and go waves for continuum traffic flow equations. SIAM J Appl Math 64(2):468–483

    Google Scholar 

  41. Helbing D (1998) From microscopic to macroscopic traffic models. In: A perspective look at nonlinear media. Lecture Notes in Phys, vol 503. Springer, Berlin, pp 122–139

    Chapter  Google Scholar 

  42. Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73(4):1067–1141, doi:10.1103/RevModPhys.73.1067

    Article  Google Scholar 

  43. Herty M, Kirchner C, Moutari S (2006) Multi-class traffic models on road networks. Commun Math Sci 4(3):591–608

    MathSciNet  MATH  Google Scholar 

  44. Herty M, Moutari S, Rascle M (2006) Optimization criteria for modelling intersections of vehicular traffic flow. Netw Heterog Media (electronic) 1(2):275–294

    Article  MathSciNet  MATH  Google Scholar 

  45. Holden H, Risebro NH (1995) A mathematical model of traffic flow on a network of unidirectional roads. SIAM J Math Anal 26(4):999–1017

    Article  MathSciNet  MATH  Google Scholar 

  46. Hoogendoorn SP, Bovy PHL (2001) State-of-the-art of vehicular traffic flow modelling. J Syst Cont Eng 215(4):283–303

    Google Scholar 

  47. Kerner BS (2000) Phase transitions in traffic flow. In: Helbing D, Hermann H, Schreckenberg M, Wolf DE (eds) Traffic and Granular Flow '99. Springer, New York, pp 253–283

    Chapter  Google Scholar 

  48. Kerner BS (2004) The physics of traffic. Springer, Berlin

    Book  Google Scholar 

  49. Kerner BS, Klenov SL (2002) A microscopic model for phase transitions in traffic flow. J Phys A 35(3):L31–L43

    Article  MathSciNet  MATH  Google Scholar 

  50. Klar A, Wegener R (1997) Enskog-like kinetic models for vehicular traffic. J Stat Phys 87(1–2):91–114

    Article  MathSciNet  MATH  Google Scholar 

  51. Klar A, Wegener R (2000) Kinetic derivation of macroscopic anticipation models for vehicular traffic. SIAM J Appl Math 60(5):1749–1766

    Article  MathSciNet  MATH  Google Scholar 

  52. Klar A, Wegener R (2004) Traffic flow: models and numerics. In: Modeling and computational methods for kinetic equations. Model Simul Sci Eng Technol. Birkhäuser, Boston, pp 219–258

    Chapter  Google Scholar 

  53. Lebacque JP, Khoshyaran MM (1999) Modelling vehicular traffic flow on networks using macroscopic models. In: Finite volumes for complex applications II. Hermes Sci Publ, Paris, pp 551–558

    Google Scholar 

  54. Leutzbach W (1988) Introduction to the Theory of Traffic Flow. Springer, New York

    Book  Google Scholar 

  55. Lighthill MJ, Whitham GB (1955) On kinematic waves, II. A theory of traffic flow on long crowded roads. Proc Roy Soc Lond Ser A 229:317–345

    Article  MathSciNet  MATH  Google Scholar 

  56. Nagel K, Wagner P, Woesler R (2003) Still flowing: approaches to traffic flow and traffic jam modeling. Oper Res 51(5):681–710

    Article  MathSciNet  MATH  Google Scholar 

  57. Paveri Fontana SL (1975) On Boltzmann-like treatments for traffic flow. Transp Res 9:225–235

    Article  Google Scholar 

  58. Payne HJ (1971) Models of freeway traffic and control. Math Models Publ Syst Simul Council Proc 28:51–61

    Google Scholar 

  59. Prigogine I (1961) A Boltzmann-like approach to the statistical theory of traffic flow. In: Theory of traffic flow. Elsevier, Amsterdam, pp 158–164

    Google Scholar 

  60. Prigogine I, Herman R (1971) Kinetic theory of vehicular traffic. American Elsevier Publishing, New York

    MATH  Google Scholar 

  61. Rascle M (2002) An improved macroscopic model of traffic flow: Derivation and links with the Lighthill–Whitham model. Math Comput Model, Traffic Flow Model Simul 35(5–6):581–590

    MathSciNet  MATH  Google Scholar 

  62. Richards PI (1956) Shock waves on the highway. Oper Res 4:42–51

    Article  MathSciNet  Google Scholar 

  63. Serre D (1996) Hyperbolicité, entropies, ondes de choc. [Hyperbolicity, entropies, shock waves.] In: Systèmes de lois de conservation, I. Fondations. [Foundations.] Diderot Editeur, Paris

    Google Scholar 

  64. Serre D (1996) Structures géométriques, oscillation et problémes mixtes. [Geometric structures, oscillation and mixed problems.] In: Systèmes de lois de conservation, II. Fondations. [Foundations.] Diderot Editeur, Paris

    Google Scholar 

  65. Tosin A (2008) Discrete kinetic and stochastic game theory for vehicular traffic: Modeling and mathematical problems. Ph D thesis, Department of Mathematics, Politecnico di Torino

    Google Scholar 

  66. Treiber M, Helbing D (2003) Memory effects in microscopic traffic models and wide scattering in flow-density data. Phys Rev E 68(4):046–119, doi:10.1103/PhysRevE.68.046119

    Article  Google Scholar 

  67. Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805–1824, doi:10.1103/PhysRevE.62.1805

    Article  Google Scholar 

  68. Treiber M, Kesting A, Helbing D (2006) Delays, inaccuracies and anticipation in microscopic traffic models. Physica A 360(1):71–88

    Article  Google Scholar 

  69. Villani C (2002) A review of mathematical topics in collisional kinetic theory. In: Handbook of mathematical fluid dynamics, vol I. North-Holland, Amsterdam, pp 71–305

    Chapter  Google Scholar 

  70. Wegener R, Klar A (1996) A kinetic model for vehicular traffic derived from a stochastic microscopic model. Transp Theory Stat Phys 25(7):785–798

    Article  MathSciNet  Google Scholar 

  71. Whitham GB (1974) Linear and nonlinear waves. Wiley‐Interscience, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Piccoli, B., Tosin, A. (2012). Vehicular Traffic: A Review of Continuum Mathematical Models. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_112

Download citation

Publish with us

Policies and ethics