Skip to main content

Dispersion Phenomena in Partial Differential Equations

  • Reference work entry
Mathematics of Complexity and Dynamical Systems
  • 545 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

The Mechanism of Dispersion

Strichartz Estimates

The Nonlinear Wave Equation

The Nonlinear Schrödinger Equation

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Notations:

Partial derivatives are written as u t or \({\partial_{t}u}\), \({\partial^{\alpha}= \partial_{x_{1}}^{\alpha_{1}}\cdot\partial_{x_{n}}^{\alpha_{n}}}\), the Fourier transform of a function is defined as

$$ \mathcal{F}f(\xi)=\widehat f(\xi)=\int \text{e}^{-ix \cdot\xi}f(x)\text{d} x $$

and we frequently use the mute constant notation \({A \lesssim B}\) to mean \({A\le C B}\) for some constant C (but only when the precise dependence of C from the other quantities involved is clear from the context).

Evolution equations:

Partial differential equations describing physical systems which evolve in time. Thus, the variable representing time is distinguished from the others and is usually denoted by t.

Cauchy problem:

A system of evolution equations, combined with a set of initial conditions at an initial time \({t=t_{0}}\). The problem is well posed if a solution exists, is unique and depends continuously on the data in suitable norms adapted to the problem.

Blow up:

In general, the solutions to a nonlinear evolution equation are not defined for all times but they break down after some time has elapsed; usually the \({L^{\infty}}\) norm of the solution or some of its derivatives becomes unbounded. This phenomenon is called blow up of the solution.

Sobolev spaces:

we shall use two instances of Sobolev space: the space \({W^{k,1}}\) with norm

$$ \|u\|_{W^{k,1}}=\sum_{|\alpha|\le k}\|\partial^{\alpha}u\|_{L^{1}}$$

and the space \({H^{s}_{q}}\) with norm

$$ \|u\|_{H^{s}}=\left\|(1-\Delta)^{s/2}u\right\|_{L^{q}}\:. $$

Recall that this definition does not reduce to the preceding one when \({q=1}\). We shall also use the homogeneous space \({\dot H^{s}_{q}}\), with norm

$$ \left\|u\right\|_{\dot H^{s}}=\left\|(-\Delta)^{s/2}u\right\|_{L^{q}}\:. $$
Dispersive estimate:

a pointwise decay estimate of the form \({|u(t,x)|\le Ct^{-\alpha}}\), usually for the solution of a partial differential equation.

Bibliography

  1. Artbazar G, Yajima K (2000) The \({L\sp p}\)-continuity of wave operators for one dimensional Schrödinger operators. J Math Sci Univ Tokyo 7(2):221–240

    MathSciNet  MATH  Google Scholar 

  2. Beals M (1994) Optimal \({L\sp \infty}\) decay for solutions to the wave equation with a potential. Comm Partial Diff Eq 19(7/8):1319–1369

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Artzi M, Trèves F (1994) Uniform estimates for a class of evolution equations. J Funct Anal 120(2):264–299

    Google Scholar 

  4. Bergh J, Löfström J (1976) Interpolation spaces. An introduction. Grundlehren der mathematischen Wissenschaften, No 223. Springer, Berlin

    Google Scholar 

  5. Bouclet J-M, Tzvetkov N (2006) On global strichartz estimates for non trapping metrics.

    Google Scholar 

  6. Bourgain J (1993) Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom Funct Anal 3(2):107–156

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain J (1995) Some new estimates on oscillatory integrals. In: (1991) Essays on Fourier analysis in honor of Elias M. Stein. Princeton Math Ser vol. 42. Princeton Univ Press, Princeton, pp 83–112

    Google Scholar 

  8. Bourgain J (1995) Estimates for cone multipliers. In: Geometric aspects of functional analysis. Oper Theory Adv Appl, vol 77. Birkhäuser, Basel, pp 41–60

    Chapter  Google Scholar 

  9. Bourgain J (1998) Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity. Int Math Res Not 5(5):253–283

    Article  MathSciNet  Google Scholar 

  10. Brenner P (1975) On \({L\sb{p}-L\sb{p\sp{\prime}}}\) estimates for the wave‐equation. Math Z 145(3):251–254

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner P (1977) \({L\sb{p}-L\sb{p^{\prime}}}\)-estimates for Fourier integral operators related to hyperbolic equations. Math Z 152(3):273–286

    Article  MathSciNet  MATH  Google Scholar 

  12. Burq N, Gérard P, Tzvetkov N (2003) The Cauchy problem for the nonlinear Schrödinger equation on a compact manifold. J Nonlinear Math Phys 10(1):12–27

    Google Scholar 

  13. Cazenave T (2003) Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol 10. New York University Courant Institute of Mathematical Sciences, New York

    Google Scholar 

  14. Choquet‐Bruhat Y (1950) Théorème d'existence pour les équations de la gravitation einsteinienne dans le cas non analytique. CR Acad Sci Paris 230:618–620

    Google Scholar 

  15. Christodoulou D, Klainerman S (1989) The nonlinear stability of the Minkowski metric in general relativity. In: Bordeaux (1988) Nonlinear hyperbolic problems. Lecture Notes in Math, vol 1402. Springer, Berlin, pp 128–145

    Chapter  Google Scholar 

  16. D'Ancona P, Fanelli L (2006) Decay estimates for the wave and dirac equations with a magnetic potential. Comm Pure Appl Anal 29:309–323

    MATH  Google Scholar 

  17. D'Ancona P, Fanelli L (2006) \({{L}^p}\) – boundedness of the wave operator for the one dimensional Schrödinger operator. Comm Math Phys 268:415–438

    Article  MathSciNet  MATH  Google Scholar 

  18. D'Ancona P, Fanelli L (2008) Strichartz and smoothing estimates for dispersive equations with magnetic potentials. Comm Partial Diff Eq 33(6):1082–1112

    Article  MathSciNet  MATH  Google Scholar 

  19. D'Ancona P, Pierfelice V (2005) On the wave equation with a large rough potential. J Funct Anal 227(1):30–77

    Article  MathSciNet  MATH  Google Scholar 

  20. D'Ancona P, Georgiev V, Kubo H (2001) Weighted decay estimates for the wave equation. J Diff Eq 177(1):146–208

    Article  MathSciNet  MATH  Google Scholar 

  21. Foschi D (2005) Inhomogeneous Strichartz estimates. J Hyperbolic Diff Eq 2(1):1–24

    Article  MathSciNet  MATH  Google Scholar 

  22. Ginibre J, Velo G (1985) The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann Inst Poincaré H Anal Non Linéaire 2(4):309–327

    Google Scholar 

  23. Ginibre J, Velo G (1995) Generalized Strichartz inequalities for the wave equation. J Funct Anal 133(1):50–68

    Article  MathSciNet  MATH  Google Scholar 

  24. Hassell A, Tao T, Wunsch J (2006) Sharp Strichartz estimates on nontrapping asymptotically conic manifolds. Am J Math 128(4):963–1024

    Article  MathSciNet  MATH  Google Scholar 

  25. Hörmander L (1997) Lectures on nonlinear hyperbolic differential equations. Mathématiques & Applications (Mathematics & Applications), vol 26. Springer, Berlin

    Google Scholar 

  26. John F (1979) Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscr Math 28(1–3):235–268

    Article  MATH  Google Scholar 

  27. John F, Klainerman S (1984) Almost global existence to nonlinear wave equations in three space dimensions. Comm Pure Appl Math 37(4):443–455

    Article  MathSciNet  MATH  Google Scholar 

  28. Journé J-L, Soffer A, Sogge CD (1991) Decay estimates for Schrödinger operators. Comm Pure Appl Math 44(5):573–604

    Google Scholar 

  29. Kato T (1965/1966) Wave operators and similarity for some non‐selfadjoint operators. Math Ann 162:258–279

    Google Scholar 

  30. Keel M, Tao T (1998) Endpoint Strichartz estimates. Am J Math 120(5):955–980

    Article  MathSciNet  MATH  Google Scholar 

  31. Klainerman S (1980) Global existence for nonlinear wave equations. Comm Pure Appl Math 33(1):43–101

    Article  MathSciNet  MATH  Google Scholar 

  32. Klainerman S (1981) Classical solutions to nonlinear wave equations and nonlinear scattering. In: Trends in applications of pure mathematics to mechanics, vol III. Monographs Stud Math, vol 11. Pitman, Boston, pp 155–162

    Google Scholar 

  33. Klainerman S (1982) Long-time behavior of solutions to nonlinear evolution equations. Arch Rat Mech Anal 78(1):73–98

    Article  MathSciNet  MATH  Google Scholar 

  34. Klainerman S (1985) Long time behaviour of solutions to nonlinear wave equations. In: Nonlinear variational problems. Res Notes in Math, vol 127. Pitman, Boston, pp 65–72

    Google Scholar 

  35. Klainerman S, Nicolò F (1999) On local and global aspects of the Cauchy problem in general relativity. Class Quantum Gravity 16(8):R73–R157

    Google Scholar 

  36. Marzuola J, Metcalfe J, Tataru D. Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. To appear on J Funct Anal

    Google Scholar 

  37. Metcalfe J, Tataru D. Global parametrices and dispersive estimates for variable coefficient wave equation. Preprint

    Google Scholar 

  38. Pecher H (1974) Die Existenz regulärer Lösungen für Cauchy- und Anfangs‐Randwert‐probleme nichtlinearer Wellengleichungen. Math Z 140:263–279 (in German)

    Article  MathSciNet  Google Scholar 

  39. Reed M, Simon B (1978) Methods of modern mathematical physics IV. In: Analysis of operators. Academic Press (Harcourt Brace Jovanovich), New York

    Google Scholar 

  40. Segal I (1968) Dispersion for non‐linear relativistic equations. II. Ann Sci École Norm Sup 4(1):459–497

    Google Scholar 

  41. Shatah J (1982) Global existence of small solutions to nonlinear evolution equations. J Diff Eq 46(3):409–425

    Article  MathSciNet  MATH  Google Scholar 

  42. Shatah J (1985) Normal forms and quadratic nonlinear Klein–Gordon equations. Comm Pure Appl Math 38(5):685–696

    Article  MathSciNet  MATH  Google Scholar 

  43. Shatah J, Struwe M (1998) Geometric wave equations. In: Courant Lecture Notes in Mathematics, vol 2. New York University Courant Institute of Mathematical Sciences, New York

    Google Scholar 

  44. Strichartz RS (1970) Convolutions with kernels having singularities on a sphere. Trans Am Math Soc 148:461–471

    Article  MathSciNet  MATH  Google Scholar 

  45. Strichartz RS (1970) A priori estimates for the wave equation and some applications. J Funct Anal 5:218–235

    Article  MathSciNet  MATH  Google Scholar 

  46. Strichartz RS (1977) Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. J Duke Math 44(3):705–714

    Article  MathSciNet  MATH  Google Scholar 

  47. Tao T (2000) Spherically averaged endpoint Strichartz estimates for the two‐dimensional Schrödinger equation. Comm Part Diff Eq 25(7–8):1471–1485

    Article  MATH  Google Scholar 

  48. Tao T (2003) Local well‐posedness of the Yang–Mills equation in the temporal gauge below the energy norm. J Diff Eq 189(2):366–382

    Article  MATH  Google Scholar 

  49. Taylor ME (1991) Pseudodifferential operators and nonlinear PDE. Progr Math 100. Birkhäuser, Boston

    Book  Google Scholar 

  50. von Wahl W (1970) Über die klassische Lösbarkeit des Cauchy‐Problems für nichtlineare Wellengleichungen bei kleinen Anfangswerten und das asymptotische Verhalten der Lösungen. Math Z 114:281–299 (in German)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wolff T (2001) A sharp bilinear cone restriction estimate. Ann Math (2) 153(3):661–698

    Article  MathSciNet  Google Scholar 

  52. Yajima K (1987) Existence of solutions for Schrödinger evolution equations. Comm Math Phys 110(3):415–426

    Article  MathSciNet  MATH  Google Scholar 

  53. Yajima K (1995) The \({W\sp {k,p}}\)-continuity of wave operators for Schrödinger operators. J Math Soc Japan 47(3):551–581

    Article  MathSciNet  MATH  Google Scholar 

  54. Yajima K (1995) The \({W\sp {k,p}}\)-continuity of wave operators for schrödinger operators. III. even‐dimensional cases \({m\geq 4}\). J Math Sci Univ Tokyo 2(2):311–346

    Google Scholar 

  55. Yajima K (1999) \({L\sp p}\)-boundedness of wave operators for two‐dimensional schrödinger operators. Comm Math Phys 208(1):125–152

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

D'Ancona, P. (2012). Dispersion Phenomena in Partial Differential Equations. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_11

Download citation

Publish with us

Policies and ethics